Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 39(45): 15974-15985, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906943

RESUMO

Engineered gold nanoparticles (AuNPs) have great potential in many applications due to their tunable optical properties, facile synthesis, and surface functionalization via thiol chemistry. When exposed to a biological environment, NPs are coated with a protein corona that can alter the NPs' biological identity but can also affect the proteins' structures and functions. Protein disulfide isomerase (PDI) is an abundant protein responsible for the disulfide formation and isomerization that contribute to overall cell redox homeostasis and signaling. Given that AuNPs are widely employed in nanomedicine and PDI plays a functional role in various diseases, the interactions between oxidized (oPDI) and reduced (rPDI) with 50 nm citrate-coated AuNPs (AuNPs) are examined in this study using various techniques. Upon incubation, PDI adsorbs to the AuNP surface, which leads to a reduction in its enzymatic activity despite limited changes in secondary structures. Partial enzymatic digestion followed by mass spectrometry analysis shows that orientation of PDI on the NP surface is dependent on both its oxidation state and the PDI:AuNP incubation ratios.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Adsorção , Nanopartículas Metálicas/química , Proteínas/metabolismo , Isomerases de Dissulfetos de Proteínas/química , Isomerases de Dissulfetos de Proteínas/metabolismo , Oxirredução
2.
Anal Chem ; 94(11): 4737-4746, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35258278

RESUMO

Upon exposure to a biological environment, nanoparticles (NPs) acquire biomolecular coatings, the most studied of which is the protein corona. This protein corona gives NPs a new biological identity that will determine various biological responses including cellular uptake, biodistribution, and toxicity. The standard method to isolate NPs from a biological matrix in order to study their coronas is centrifugation, but more gentle means of retrieval may enable deeper understanding of both irreversibly bound hard coronas and more loosely bound soft coronas. In this study, magnetic gold-coated iron oxide NPs were incubated with rainbow trout gill cell total protein extracts and mass spectrometric proteomic analysis was conducted to determine the composition of the protein coronas isolated by either centrifugation or magnetic retrieval. The number of washes were varied to strip away the soft coronas and isolate the hard corona. Hundreds of proteins were adsorbed to the NPs. Some proteins were common to all isolation methods and many others were particular to the isolation method. Some qualitative trends in protein character were discerned from quantitative proteomic analyses, but more importantly, a new kind of protein corona was identified, mixed corona, in which the labile or inert nature of the protein-NP interaction is dependent upon sample history.


Assuntos
Nanopartículas , Coroa de Proteína , Ouro , Nanopartículas Magnéticas de Óxido de Ferro , Nanopartículas/química , Coroa de Proteína/química , Proteínas/química , Proteômica , Distribuição Tecidual
3.
Acc Chem Res ; 52(8): 2124-2135, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31373796

RESUMO

Plasmons, collective oscillations of conduction-band electrons in nanoscale metals, are well-known phenomena in colloidal gold and silver nanocrystals that produce brilliant visible colors in these materials that depend on the nanocrystal size and shape. Under illumination at or near the plasmon bands, gold and silver nanocrystals exhibit properties that enable fascinating biological applications: (i) the nanocrystals elastically scatter light, providing a straightforward way to image them in complex aqueous environments; (ii) the nanocrystals produce local electric fields that enable various surface-enhanced spectroscopies for sensing, molecular diagnostics, and boosting of bound fluorophore performance; (iii) the nanocrystals produce heat, which can lead to chemical transformations at or near the nanocrystal surface and can photothermally destroy nearby cells. While all the above-mentioned applications have already been well-demonstrated in the literature, this Account focuses on several other aspects of these nanomaterials, in particular gold nanorods that are approximately the size of viruses (diameters of ∼10 nm, lengths up to 100 nm). Absolute extinction, scattering, and absorption properties are compared for gold nanorods of various absolute dimensions, and references for how to synthesize gold nanorods with four different absolute dimensions are provided. Surface chemistry strategies for coating nanocrystals with smooth or rough shells are detailed; specific examples include mesoporous silica and metal-organic framework shells for porous (rough) coatings and polyelectrolyte layer-by-layer wrapping for "smooth" shells. For self-assembled-monolayer molecular coating ligands, the smoothest shells of all, a wide range of ligand densities have been reported from many experiments, yielding values from less than 1 to nearly 10 molecules/nm2 depending on the nanocrystal size and the nature of the ligand. Systematic studies of ligand density for one particular ligand with a bulky headgroup are highlighted, showing that the highest ligand density occurs for the smallest nanocrystals, even though these ligand headgroups are the most mobile as judged by NMR relaxation studies. Biomolecular coronas form around spherical and rod-shaped nanocrystals upon immersion into biological fluids; these proteins and lipids can be quantified, and their degree of adsorption depends on the nanocrystal surface chemistry as well as the biophysical characteristics of the adsorbing biomolecule. Photothermal adsorption and desorption of proteins on nanocrystals depend on the enthalpy of protein-nanocrystal surface interactions, leading to light-triggered alteration in protein concentrations near the nanocrystals. At the cellular scale, gold nanocrystals exert genetic changes at the mRNA level, with a variety of likely mechanisms that include alteration of local biomolecular concentration gradients, changes in mechanical properties of the extracellular matrix, and physical interruption of key cellular processes-even without plasmonic effects. Microbiomes, both organismal and environmental, are the likely first point of contact of nanomaterials with natural living systems; we see a major scientific frontier in understanding, predicting, and controlling microbe-nanocrystal interactions, which may be augmented by plasmonic effects.


Assuntos
Nanopartículas Metálicas/química , Nanotubos/química , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/efeitos da radiação , Ouro/química , Ouro/efeitos da radiação , Humanos , Hipertermia Induzida/métodos , Luz , Nanopartículas Metálicas/efeitos da radiação , Camundongos , Nanotubos/efeitos da radiação , Pseudomonas aeruginosa/efeitos dos fármacos , Ressonância de Plasmônio de Superfície
4.
Chem Commun (Camb) ; 58(70): 9728-9741, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35975479

RESUMO

Surface patterning of inorganic nanoparticles through site-selective functionalization with mixed-ligand shells or additional inorganic material is an intriguing approach to developing tailored nanomaterials with potentially novel and/or multifunctional properties. The unique physicochemical properties of such nanoparticles are likely to impact their behavior and functionality in biological environments, catalytic systems, and electronics applications, making it vital to understand how we can achieve and characterize such regioselective surface functionalization. This Feature Article will review methods by which chemists have selectively modified the surface of colloidal nanoparticles to obtain both two-sided Janus particles and nanoparticles with patchy or stripey mixed-ligand shells, as well as to achieve directed growth of mesoporous oxide materials and metals onto existing nanoparticle templates in a spatially and compositionally controlled manner. The advantages and drawbacks of various techniques used to characterize the regiospecificity of anisotropic surface coatings are discussed, as well as areas for improvement, and future directions for this field.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Catálise , Ligantes , Metais/química , Nanopartículas/química
5.
Chem Sci ; 11(41): 11244-11258, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34094365

RESUMO

The increasing use of nanoscale lithium nickel manganese cobalt oxide (Li x Ni y Mn z Co1-y-z O2, NMC) as a cathode material in lithium-ion batteries poses risk to the environment. Learning toxicity mechanisms on molecular levels is critical to promote proactive risk assessment of these complex nanomaterials and inform their sustainable development. We focused on DNA damage as a toxicity mechanism and profiled in depth chemical and biological changes linked to DNA damage in two environmentally relevant bacteria upon nano-NMC exposure. DNA damage occurred in both bacteria, characterized by double-strand breakage and increased levels of many putative chemical modifications on bacterial DNA bases related to direct oxidative stress and lipid peroxidation, measured by cutting-edge DNA adductomic techniques. Chemical probes indicated elevated intracellular reactive oxygen species and transition metal ions, in agreement with DNA adductomics and gene expression analysis. By integrating multi-dimensional datasets from chemical and biological measurements, we present rich mechanistic insights on nano-NMC-induced DNA damage in bacteria, providing targets for biomarkers in the risk assessment of reactive materials that may be extrapolated to other nano-bio interactions.

6.
Environ Sci Nano ; 6(1): 305-314, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31572614

RESUMO

The wide applications of lithium intercalating complex metal oxides in energy storage devices call for a better understanding of their environmental impact at the end of their life cycle. In this study, we examine the biological impact of a panel of nanoscale lithium nickel manganese cobalt oxides (Li x Ni y Mn z Co1-y-z O2, 0 < x, y, z < 1, abbreviated to NMCs) to a model Gram-positive bacterium, Bacillus subtilis, in terms of cellular respiration and growth. A highly sensitive single-cell gel electrophoresis method is also applied for the first time to understand the genotoxicity of these nanomaterials to bacterial cells. Results from these assays indicate that the free Ni and Co ions released from the incongruent dissolution of the NMC material in B. subtilis growth medium induced both hindered growth and cellular respiration. More remarkably, the DNA damage induced by the combination of the two ions in solution is comparable to that induced by the NMC material, which suggests that the free Ni and Co ions are responsible for the toxicity observed. A material redesign by enriching Mn is also presented. The combined approaches of evaluating their impact on bacterial growth, respiration, and DNA damage at a single-cell level, as well as other phenotypical changes allows us to probe the nanomaterials and bacterial cells from a mechanistic prospective, and provides a useful means to an understanding of bacterial response to new potential environmental stressors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA