Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Gut ; 69(10): 1738-1749, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31937549

RESUMO

OBJECTIVE: Intestinal metaplasia (IM) is a premalignant stage that poses a greater risk for subsequent gastric cancer (GC). However, factors regulating IM to GC progression remain unclear. Previously, activated DNA damage response (DDR) signalling factors were shown to engage tumour-suppressive networks in premalignant lesions. Here, we interrogate the relationship of DDR signalling to mutational accumulation in IM lesions. DESIGN: IM biopsies were procured from the gastric cancer epidemiology programme, an endoscopic surveillance programme where biopsies have been subjected to (epi)genomic characterisation. IM samples were classified as genome-stable or genome-unstable based on their mutational burden/somatic copy-number alteration (CNA) profiles. Samples were probed for DDR signalling and cell proliferation, using the markers γH2AX and MCM2, respectively. The expression of the gastric stem cell marker, CD44v9, was also assessed. Tissue microarrays representing the GC progression spectrum were included. RESULTS: MCM2-positivity increased during GC progression, while γH2AX-positivity showed modest increase from normal to gastritis and IM stages, with further increase in GC. γH2AX levels correlated with the extent of chronic inflammation. Interestingly, genome-stable IM lesions had higher γH2AX levels underscoring a protective anti-cancer role for DDR signalling. In contrast, genome-unstable IM lesions with higher mutational burden/CNAs had lower γH2AX levels, elevated CD44v9 expression and modest promoter hypermethylation of DNA repair genes WRN, MLH1 and RAD52. CONCLUSIONS: Our data suggest that IM lesions with active DDR will likely experience a longer latency at the premalignant state until additional hits that override DDR signalling clonally expand and promote progression. These observations provide insights on the factors governing IM progression.


Assuntos
Mucosa Gástrica/patologia , Histonas/genética , Componente 2 do Complexo de Manutenção de Minicromossomo/genética , Proteína 1 Homóloga a MutL/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Neoplasias Gástricas , Helicase da Síndrome de Werner/genética , Biópsia/métodos , Dano ao DNA/genética , Metilação de DNA , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/análise , Masculino , Metaplasia/genética , Metaplasia/patologia , Pessoa de Meia-Idade , Mutação , Fatores de Proteção , Transdução de Sinais , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
2.
Appl Microbiol Biotechnol ; 99(6): 2793-803, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25487889

RESUMO

The protein 3D8 single-chain variable fragment (3D8 scFv) has potential anti-viral activity due to its ability to penetrate into cells and hydrolyze nucleic acids. Probiotic Lactobacillus paracasei engineered to secrete 3D8 scFv for oral administration was used to test the anti-viral effects of 3D8 scFv against gastrointestinal virus infections. We found that injection of 3D8 scFv into the intestinal lumen resulted in the penetration of 3D8 scFv into the intestinal villi and lamina propria. 3D8 scFv secreted from engineered L. paracasei retained its cell-penetrating and nucleic acid-hydrolyzing activities, which were previously shown with 3D8 scFv expressed in Escherichia coli. Pretreatment of RAW264.7 cells with 3D8 scFv purified from L. paracasei prevented apoptosis induction by murine norovirus infection and decreased messenger RNA (mRNA) expression of the viral capsid protein VP1. In a mouse model, oral administration of the engineered L. paracasei prior to murine norovirus infection reduced the expression level of mRNA encoding viral polymerase. Taken together, these results suggest that L. paracasei secreting 3D8 scFv provides a basis for the development of ingestible anti-viral probiotics active against gastrointestinal viral infection.


Assuntos
Lactobacillus/genética , Norovirus/efeitos dos fármacos , Probióticos , Anticorpos de Cadeia Única/farmacologia , Administração Oral , Animais , Apoptose/efeitos dos fármacos , Infecções por Caliciviridae/tratamento farmacológico , Infecções por Caliciviridae/terapia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Clonagem Molecular , Células Epiteliais/virologia , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética , Hidrólise , Intestinos/citologia , Intestinos/virologia , Lactobacillus/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Células RAW 264.7 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Anticorpos de Cadeia Única/biossíntese
3.
Sci Adv ; 10(23): eadm9589, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838142

RESUMO

DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.


Assuntos
Replicação do DNA , Imunidade Inata , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Transdução de Sinais , Arginina/metabolismo , Arginina/análogos & derivados , Estresse Fisiológico , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Dano ao DNA , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
5.
Cancer Discov ; 13(5): 1144-1163, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071673

RESUMO

Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE: Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.


Assuntos
Linfoma Difuso de Grandes Células B , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Oncogenes , Linfoma Difuso de Grandes Células B/patologia
6.
Oncogene ; 41(13): 1986-2002, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236967

RESUMO

Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.


Assuntos
Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Neoplasias , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Fatores de Transcrição , Trifosfato de Adenosina/metabolismo , Apoptose , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Consumo de Oxigênio , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Quinase 1 Polo-Like
7.
Artigo em Inglês | MEDLINE | ID: mdl-35265388

RESUMO

Background: Viet Nam confirmed its first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on 23 January 2020 among travellers from Wuhan, China, and experienced several clusters of community transmission until September. Viet Nam implemented an aggressive testing, isolation, contact tracing and quarantine strategy in response to all laboratory-confirmed cases. We report the results of SARS-CoV-2 testing during the first half of 2020 in northern Viet Nam. Methods: Between January and May 2020, 15 650 upper respiratory tract specimens were collected from 14 470 suspected cases and contacts in northern Viet Nam. All were tested for SARS-CoV-2 by real-time RT-PCR. Individuals with positive specimens were tested every three days until two tests were negative. Positive specimens from 81 individuals were cultured. Results: Among 14 470 tested individuals, 158 (1.1%) cases of SARS-CoV-2 infection were confirmed; 89 were imported and 69 were associated with community transmission. Most patients (122, 77%) had negative results after two tests, while 11 and 4 still tested positive when sampled a third and fourth time, respectively. SARS-CoV-2 was isolated from 29 of 81 specimens (36%) with a cycle threshold (Ct) value < 30. Seven patients who tested positive again after testing negative had Ct values > 30 and negative cultures. Conclusion: Early, widespread testing for SARS-CoV-2 in northern Viet Nam identified very few cases, which, when combined with other aggressive strategies, may have dramatically contained the epidemic. We observed rapid viral clearance and very few positive results after clearance. Large-scale molecular diagnostic testing is a critical part of early detection and containment of COVID-19 in Viet Nam and will remain necessary until vaccination is widely implemented.


Assuntos
COVID-19 , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Teste para COVID-19 , Humanos , Quarentena , SARS-CoV-2 , Vietnã/epidemiologia
8.
Jpn J Infect Dis ; 70(5): 522-527, 2017 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-28367882

RESUMO

Severe acute respiratory infections (SARI) are leading causes of hospitalization, morbidity, and mortality in children worldwide. The aim of this study was to identify viral pathogens responsible for SARI in northern Vietnam in the period from 2011 to 2014. Throat swabs and tracheal aspirates were collected from SARI patients according to WHO guidelines. The presence of 13 different viral pathogens (influenza A[H1N1]pdm09; A/H3N2; A/H5; A/H7 and B; para influenza 1,2,3; RSV; HMPV; adeno; severe acute respiratory syndrome-CoV and rhino) was tested by conventional/real-time reverse transcription-polymerase chain reaction. During the study period, 975 samples were collected and tested. More than 30% (32.1%, 313 samples) of the samples showed evidence of infection with influenza viruses, including A/H3N2 (48 samples), A (H1N1) pdm09 (221 samples), influenza B (42 samples), and co-infection of A (H1N1) pdm09 or A/H3N2 and influenza B (2 samples). Other respiratory pathogens were detected in 101 samples, including rhinovirus (73 samples), adenovirus (10 samples), hMPV (9 samples), parainfluenza 3 (5 samples), parainfluenza 2 (3 samples), and RSV (1 sample). Influenza A/H5, A/H7, or SARS-CoV were not detected. Respiratory viral infection, particularly infection of influenza and rhinoviruses, were associated with high rates of SARI hospitalization, and future studies correlating the clinical aspects are needed to design interventions, including targeted vaccination.


Assuntos
Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Viroses/epidemiologia , Viroses/virologia , Vírus/classificação , Vírus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Monitoramento Epidemiológico , Feminino , Hospitalização , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Faringe/virologia , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Traqueia/virologia , Vietnã/epidemiologia , Adulto Jovem
10.
Mol Cells ; 38(9): 773-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26255831

RESUMO

3D8 single chain variable fragment (scFv) is a recombinant monoclonal antibody with nuclease activity that was originally isolated from autoimmune-prone MRL mice. In a previous study, we analyzed the nuclease activity of 3D8 scFv and determined that a HeLa cell line expressing 3D8 scFv conferred resistance to herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PRV). In this study, we demonstrate that 3D8 scFv could be delivered to target tissues and cells where it exerted a therapeutic effect against PRV. PRV was inoculated via intramuscular injection, and 3D8 scFv was injected intraperitoneally. The observed therapeutic effect of 3D8 scFv against PRV was also supported by results from quantitative reverse transcription polymerase chain reaction, southern hybridization, and immunohistochemical assays. Intraperitoneal injection of 5 and 10 µg 3D8 scFv resulted in no detectable toxicity. The survival rate in C57BL/6 mice was 9% after intramuscular injection of 10 LD50 PRV. In contrast, the 3D8 scFv-injected C57BL/6 mice showed survival rates of 57% (5 µg) and 47% (10 µg). The results indicate that 3D8 scFv could be utilized as an effective antiviral agent in several animal models.


Assuntos
Anticorpos Monoclonais/farmacologia , Antivirais/farmacologia , Pseudorraiva/prevenção & controle , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Antivirais/química , Antivirais/farmacocinética , Linhagem Celular Tumoral , Desoxirribonucleases/química , Avaliação Pré-Clínica de Medicamentos , Feminino , Herpesvirus Suídeo 1/efeitos dos fármacos , Herpesvirus Suídeo 1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ribonucleases/química , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/farmacocinética , Distribuição Tecidual , Replicação Viral/efeitos dos fármacos
11.
Viruses ; 7(9): 5133-44, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26402693

RESUMO

The antiviral effect of a catalytic RNA-hydrolyzing antibody, 3D8 scFv, for intranasal administration against avian influenza virus (H1N1) was described. The recombinant 3D8 scFv protein prevented BALB/c mice against H1N1 influenza virus infection by degradation of the viral RNA genome through its intrinsic RNA-hydrolyzing activity. Intranasal administration of 3D8 scFv (50 µg/day) for five days prior to infection demonstrated an antiviral activity (70% survival) against H1N1 infection. The antiviral ability of 3D8 scFv to penetrate into epithelial cells from bronchial cavity via the respiratory mucosal layer was confirmed by immunohistochemistry, qRT-PCR, and histopathological examination. The antiviral activity of 3D8 scFv against H1N1 virus infection was not due to host immune cytokines or chemokines, but rather to direct antiviral RNA-hydrolyzing activity of 3D8 scFv against the viral RNA genome. Taken together, our results suggest that the RNase activity of 3D8 scFv, coupled with its ability to penetrate epithelial cells through the respiratory mucosal layer, directly prevents H1N1 virus infection in a mouse model system.


Assuntos
Anticorpos Catalíticos/administração & dosagem , Antivirais/administração & dosagem , Células Epiteliais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Ribonucleases/administração & dosagem , Anticorpos de Cadeia Única/administração & dosagem , Administração Intranasal , Animais , Antivirais/farmacocinética , Hidrólise , Camundongos Endogâmicos BALB C , RNA Viral/metabolismo , Anticorpos de Cadeia Única/farmacocinética , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA