Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Immunology ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468451

RESUMO

Inflammation is initiated and driven by a mixture of mediators, which modify effects of each other. This study analysed in vitro pro-inflammatory activity of inflammatory cytokines (TNFα and IL-1ß) in a combination with a lipid DAMP molecule, oxidized palmitoyl-arachidonoyl-phosphatidylcholine (OxPAPC). The study was performed on endothelial and monocytic cell lines. The cells were treated with different concentrations of TNFα or IL-1ß, OxPAPC and their combinations, either in the presence or absence of drugs regulating inflammation. Pro-inflammatory effects of TNFα/IL-1ß and OxPAPC were estimated by analysis of chemokines CXCL8, CXCL2 and CXCL3 by ELISA and RT-PCR. Toxicity was determined by analysis of metabolic activity. Statistical significance was estimated by ANOVA and Dunnett's test. OxPAPC was a much weaker chemokine inducer as compared to TNFα or IL-1ß. However, OxPAPC and TNFα/IL-1ß together induced effects that were significantly stronger than the arithmetical sum of individual effects. This cooperative action of OxPAPC and TNFα was reversed by inhibitors of p38 MAPK. We hypothesise that the boosting of TNFα and IL-1ß effects by OxPAPC may be more pathologically important than the action of the lipid alone. Inhibitors of p38 MAPK may become a tool for analysis of pathological role of oxidized phospholipids.

2.
Environ Sci Technol ; 57(37): 13793-13807, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37671787

RESUMO

The impact of aerosols on human health and climate is well-recognized, yet many studies have only focused on total PM2.5 or changes from anthropogenic activities. This study quantifies the health and climate effects of organic aerosols (OA) from anthropogenic, biomass burning, and biogenic sources. Using two atmospheric chemistry models, CAM-chem and GEOS-Chem, our findings reveal that anthropogenic primary OA (POA) has the highest efficiency for health effects but the lowest for direct radiative effects due to spatial and temporal variations associated with population and surface albedo. The treatment of POA as nonvolatile or semivolatile also influences these efficiencies through different chemical processes. Biogenic OA shows moderate efficiency for health effects and the highest for direct radiative effects but has the lowest efficiency for indirect effects due to the reduced high cloud, caused by stabilized temperature profiles from aerosol-radiation interactions in biogenic OA-rich regions. Biomass burning OA is important for cloud radiative effect changes in remote atmospheres due to its ability to be transported further than other OAs. This study highlights the importance of not only OA characteristics such as toxicity and refractive index but also atmospheric processes such as transport and chemistry in determining health and climate impact efficiencies.


Assuntos
Clima , Saúde Global , Humanos , Atmosfera , Temperatura , Aerossóis
3.
Pharm Res ; 32(2): 628-39, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25145336

RESUMO

PURPOSE: The lack of effective screening methods and systemic understanding of interaction mechanisms complicates the stabilizer selection process for nanocrystallization. This study focuses on the efficiency of stabilizers with various molecular compositions and structures to stabilize drug nanocrystals. METHODS: Five structurally different polymers were chosen as stabilizers for indomethacin nanocrystals. The affinity of polymers onto drug surfaces was measured using surface plasmon resonance (SPR) and contact angle techniques. Nanosuspensions were prepared using the wet-ball milling technique and their physico-chemical properties were thoroughly characterized. RESULTS: SPR and contact angle measurements correlated very well with each other and showed that the binding efficiency decreased in the order L64 > 17R4 > F68 ≈ T908 ≈ T1107, which is attributed to the reduced PPO/PEO ratio and different polymer structures. The electrostatic interactions between the protonated amine of poloxamines and ionized indomethacin enhanced neither the affinity nor the properties of nanosuspensions, such as particle size and physical stability. CONCLUSIONS: A good stabilizer should have high binding efficiency, full coverage, and optimal hydrophobic/hydrophilic balance. A high affinity combined with short PEO chains (L64, 17R4) caused poor physical stability of nanosuspensions, whereas moderate binding efficiencies (F68, T908, T1107) with longer PEO chains produced physically stable nanosuspensions.


Assuntos
Excipientes/metabolismo , Indometacina/metabolismo , Nanopartículas/metabolismo , Polietilenoglicóis/metabolismo , Propilenoglicóis/metabolismo , Interações Medicamentosas , Excipientes/química , Indometacina/química , Nanopartículas/química , Polietilenoglicóis/química , Polímeros/química , Polímeros/metabolismo , Propilenoglicóis/química , Ressonância de Plasmônio de Superfície/métodos
4.
Pharm Dev Technol ; 18(6): 1288-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22356486

RESUMO

Acetaldehyde is a known mutagenic substance and has been classified as a group-one carcinogen by the WHO. It is possible to bind acetaldehyde locally in the gastrointestinal (GI) tract with the semi-essential amino acid l-cysteine, which reacts covalently with acetaldehyde and forms compound 2-methyl-thiozolidine-4-carboxylic acid (MTCA). The Caco-2 cell line was used to determine the permeation of l-cysteine and MTCA, as well as the possible cell toxicity of both substances. Neither of the substances permeated through the Caco-2 cells at the concentrations used in this study, and only the highest concentration of MTCA affected the viability of the cells in the MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide) test. These results showed that when l-cysteine is administered in formulations releasing it locally in the lower parts of GI tract, it is not absorbed but can react with acetaldehyde, and that neither l-cysteine nor MTCA is harmful to the cells when present locally in the upper parts of GI tract. This study also shows that MTCA is sensitive at a lower pH of 5.5. Since stable MTCA is desired in different parts of the GI tract, this observation raises concern over the influence of lower pH on l-cysteine-containing product ability to bind and eliminate carcinogenic acetaldehyde.


Assuntos
Cisteína/farmacocinética , Cisteína/toxicidade , Tiazolidinas/farmacocinética , Tiazolidinas/toxicidade , Acetaldeído/farmacocinética , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade
5.
J Colloid Interface Sci ; 584: 310-319, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33069029

RESUMO

The development of in vitro cell models that mimic cell behavior in organs and tissues is an approach that may have remarkable impact on drug testing and tissue engineering applications in the future. Plant-based, chemically unmodified cellulose nanofibrils (CNF) hydrogel is a natural, abundant, and biocompatible material that has attracted great attention for biomedical applications, in particular for three-dimensional cell cultures. However, the mechanisms of cell-CNF interactions and factors that affect these interactions are not yet fully understood. In this work, multi-parametric surface plasmon resonance (SPR) was used to study how the adsorption of human hepatocellular carcinoma (HepG2) cells on CNF films is affected by the different proteins and components of the cell medium. Both human recombinant laminin-521 (LN-521, a natural protein of the extracellular matrix) and poly-l-lysine (PLL) adsorbed on CNF films and enhanced the attachment of HepG2 cells. Cell medium components (glucose and amino acids) and serum proteins (fetal bovine serum, FBS) also adsorbed on both bare CNF and on protein-coated CNF substrates. However, the adsorption of FBS hindered the attachment of HepG2 cells to LN-521- and PLL-coated CNF substrates, suggesting that serum proteins blocked the formation of laminin-integrin bonds and decreased favorable PLL-cell electrostatic interactions. This work sheds light on the effect of different factors on cell attachment to CNF, paving the way for the utilization and optimization of CNF-based materials for different tissue engineering applications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanofibras , Celulose , Humanos , Laminina , Neoplasias Hepáticas/tratamento farmacológico , Polilisina , Ressonância de Plasmônio de Superfície
6.
Free Radic Biol Med ; 174: 264-271, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34371153

RESUMO

Oxidized phospholipids (OxPLs) containing enzymatically or non-enzymatically oxidized fatty acids (oxylipins) are increasingly recognized as lipid mediators involved in pathogenesis of diseases. Further understanding of structure-activity relationship and molecular mechanisms activated by OxPLs is hampered by the complexity of synthesis of individual molecular species. Although dozens of individual free oxylipins are commercially available, their attachment to the phospholipid scaffold requires relatively harsh conditions during activation of carboxy-group, which may lead to decomposition of unstable oxylipins. Furthermore, additional protection-deprotection steps are required for oxylipins containing hydroxy-groups. In this work we describe synthesis of OxPLs containing oxylipins bound at the sn-2-position via an amide-bond that is characteristic of sphingophospholipids. Activation of oxylipins and attachment to the phospholipid scaffold are performed under mild conditions and characterized by high yield. Hydroxy-groups of oxylipins do not interfere with reactions and therefore no protection/deprotection steps are needed. In order to prevent oxylipin migration, a fatty acid residue at the sn-1 was bound through an alkyl bond, which is a common bond present in a large proportion of naturally occurring phospholipids. An additional advantage of combining alkyl and amide bonds in a single phospholipid molecule is that both types of bonds are phospholipase A1/A2-resistant, which may be expected to improve biological stability of OxPLs and thus simplify analysis of their effects. As proof of principle, several alkyl-amide oxidized phosphatidylcholines (OxPCs) containing either linear or prostane ring oxylipins have been synthesized. Importantly, we show here that alkyl-amide-OxPCs demonstrated biological activities similar to those of di-acyl-OxPCs. Alkyl-amide-OxPCs inhibited pro-inflammatory action of LPS and increased endothelial cellular barrier in vitro and in mouse models. The effects of alkyl-amide and di-acyl-OxPCs developed in a similar range of concentrations. We hypothesize that alkyl-amide-OxPLs may become a useful tool for deeper analysis of the structure-activity relationship of OxPLs.


Assuntos
Endotoxinas , Fosfolipídeos , Amidas , Animais , Camundongos , Oxirredução , Fosfatidilcolinas
7.
Atmos Chem Phys ; 21(20): 1-15663, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34824572

RESUMO

We present in this technical note the research protocol for phase 4 of the Air Quality Model Evaluation International Initiative (AQMEII4). This research initiative is divided into two activities, collectively having three goals: (i) to define the current state of the science with respect to representations of wet and especially dry deposition in regional models, (ii) to quantify the extent to which different dry deposition parameterizations influence retrospective air pollutant concentration and flux predictions, and (iii) to identify, through the use of a common set of detailed diagnostics, sensitivity simulations, model evaluation, and reduction of input uncertainty, the specific causes for the current range of these predictions. Activity 1 is dedicated to the diagnostic evaluation of wet and dry deposition processes in regional air quality models (described in this paper), and Activity 2 to the evaluation of dry deposition point models against ozone flux measurements at multiple towers with multiyear observations (to be described in future submissions as part of the special issue on AQMEII4). The scope of this paper is to present the scientific protocols for Activity 1, as well as to summarize the technical information associated with the different dry deposition approaches used by the participating research groups of AQMEII4. In addition to describing all common aspects and data used for this multi-model evaluation activity, most importantly, we present the strategy devised to allow a common process-level comparison of dry deposition obtained from models using sometimes very different dry deposition schemes. The strategy is based on adding detailed diagnostics to the algorithms used in the dry deposition modules of existing regional air quality models, in particular archiving diagnostics specific to land use-land cover (LULC) and creating standardized LULC categories to facilitate cross-comparison of LULC-specific dry deposition parameters and processes, as well as archiving effective conductance and effective flux as means for comparing the relative influence of different pathways towards the net or total dry deposition. This new approach, along with an analysis of precipitation and wet deposition fields, will provide an unprecedented process-oriented comparison of deposition in regional air quality models. Examples of how specific dry deposition schemes used in participating models have been reduced to the common set of comparable diagnostics defined for AQMEII4 are also presented.

8.
Waste Manag Res ; 28(3): 220-7, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19470547

RESUMO

Recent media attention has amply demonstrated the need for changes in our society regarding waste. The cost of waste is rising, European legislation is driving forward waste reduction policies and industry is being made responsible for the waste that all products make. This legislation is also driving a reduction in biodegradable municipal waste. In general there are a number of factors ranging from the media, financial and political to environmental, that are driving forward an agenda to decrease both general waste and food waste going to landfill. A necessary requirement of such an agenda is a benchmark of the current composition and scale of both general waste and food waste. Hence, this can then be used as a measure to demonstrate improvement. A measurement methodology and the benchmark data already exists for general waste. However, there is little or no previous work about the compositional make up of food waste. This paper discusses the necessity for a compositional food waste analysis and the pros and cons of various food waste measurement methodologies. Results for a specific methodology are illustrated and suggestions for a revision of this methodology are proposed.


Assuntos
Gerenciamento de Resíduos/métodos , Projetos Piloto , Reino Unido , Gerenciamento de Resíduos/economia
9.
ACS Omega ; 4(16): 16878-16890, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31646234

RESUMO

The exploitation of curcumin for oral disease treatment is limited by its low solubility, poor bioavailability, and low stability. Surface-functionalized poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) have shown promising results to ameliorate selective delivery of drugs to the gastro-intestinal tract. In this study, curcumin-loaded PLGA NPs (C-PLGA NPs) of about 200 nm were surface-coated with chitosan (CS) for gastro-intestinal mucosa adhesion, wheat germ agglutinin (WGA) for colon targeting or GE11 peptide for tumor colon targeting. Spectrometric and zeta potential analyses confirmed the successful functionalization of the C-PLGA NPs. Real-time label-free assessment of the cell membrane-NP interactions and NP cell uptake were performed by quartz crystal microbalance coupled with supported lipid bilayers and by surface plasmon resonance coupled with living cells. The study showed that CS-coated C-PLGA NPs interact with cells by the electrostatic mechanism, while both WGA- and GE11-coated C-PLGA NPs interact and are taken up by cells by specific active mechanisms. In vitro cell uptake studies corroborated the real-time label-free assessment by yielding a curcumin cell uptake of 7.3 ± 0.3, 13.5 ± 1.0, 27.3 ± 4.9, and 26.0 ± 1.3 µg per 104 HT-29 cells for noncoated, CS-, WGA-, and GE11-coated C-PLGA NPs, respectively. Finally, preliminary in vivo studies showed that the WGA-coated C-PLGA NPs efficiently accumulate in the colon after oral administration to healthy Balb/c mice. In summary, the WGA- and GE11-coated C-PLGA NPs displayed high potential for application as active targeted carriers for anticancer drug delivery to the colon.

10.
Int Immunopharmacol ; 7(6): 734-43, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17466907

RESUMO

We report that the novel anthracycline analog, 13-deoxy, 5-iminodoxorubicin (DIDOX), represents a potentially new class of immunosuppressive agents. DIDOX has been structurally modified from the parent compound, doxorubicin, to remove the carbonyl group at carbon-13 and the quinone moiety at carbon-5 since these structures likely mediate the cardiotoxic side effects of this family of chemotherapeutic drugs. Our studies demonstrate that DIDOX inhibits T cell proliferation and the expression of the T cell activation molecules, CD25 and CD40L. DIDOX also inhibits the production of the pro-inflammatory cytokine, TNF-alpha and IL-2. Studies using animal models demonstrate that DIDOX inhibits the inflammation accompanying contact hypersensitivity reactions and possesses reduced cardiotoxicity compared to doxorubicin. These findings indicate that DIDOX has important immunosuppressive activities that may warrant the development of this new and improved anthracycline for the treatment of T cell-mediated inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Doxorrubicina/análogos & derivados , Imunossupressores/farmacologia , Animais , Anti-Inflamatórios/sangue , Anti-Inflamatórios/farmacocinética , Linfócitos T CD4-Positivos/imunologia , Ligante de CD40/imunologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Dermatite de Contato/tratamento farmacológico , Dermatite de Contato/patologia , Dinitrofluorbenzeno , Doxorrubicina/sangue , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Ecocardiografia , Átrios do Coração/efeitos dos fármacos , Humanos , Imunossupressores/sangue , Imunossupressores/farmacocinética , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Fator de Necrose Tumoral alfa/imunologia
11.
Atmos Chem Phys ; 17(3): 2103-2162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30147712

RESUMO

Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry-climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.

12.
Cell Immunol ; 241(1): 47-58, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16963006

RESUMO

CD40 ligand is an important immunoregulatory protein expressed by T cells. This protein exists as two isoforms, a membrane glycoprotein and a truncated soluble form. Here we demonstrate that membrane and soluble CD40L (sCD40L) are differentially regulated depending upon the activation stimulus. In T cell receptor activated cells, both membrane and sCD40L proteins are expressed and CD28 costimulation further increases their expression. The dissection of TCR generated signals into calcium and PKC-dependent pathways demonstrates that calcium is sufficient to induce membrane CD40L yet insufficient for sCD40L. In contrast, sCD40L is preferentially induced by PKC. Moreover, sCD40L production is blocked by Zn(2+)-dependent metalloproteinase inhibitors while membrane CD40L is concurrently increased. This profile suggests the potential involvement of the ADAM-10 protease which was subsequently shown to cleave membrane CD40L to generate sCD40L. Given the role of sCD40L in numerous disease pathologies and its ability to activate proximal and distal immune responses, the regulated cleavage of CD40L may likely contribute to disease mechanisms.


Assuntos
Ligante de CD40/metabolismo , Proteínas de Membrana/metabolismo , Linfócitos T/metabolismo , Antígenos CD28/fisiologia , Complexo CD3/fisiologia , Células Cultivadas , Humanos , Ligantes , Ativação Linfocitária/imunologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA