Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2314265121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38470930

RESUMO

The debate on the sign of the soil moisture-precipitation feedback remains open. On the one hand, studies using global coarse-resolution climate models have found strong positive feedback. However, such models cannot represent convection explicitly. On the other hand, studies using km-scale regional climate models and explicit convection have reported negative feedback. Yet, the large-scale circulation is prescribed in such models. This study revisits the soil moisture-precipitation feedback using global, coupled simulations conducted for 1 y with explicit convection and compares the results to coarse-resolution simulations with parameterized convection. We find significant differences in a majority of points with feedback that is weaker and dominantly negative with explicit convection. The model with explicit convection is more often in a wet regime and prefers the triggering of convection over dry soil in the presence of soil moisture heterogeneity, in contrast to the coarse-resolution model. Further analysis indicates that the feedback not only between soil moisture and evapotranspiration but also between evapotranspiration and precipitation is weaker, in better agreement with observations. Our findings suggest that coarse-resolution models may not be well suited to study aspects of climate change over land such as changes in droughts and heatwaves.

2.
Proc Natl Acad Sci U S A ; 115(22): 5692-5697, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760083

RESUMO

Convection-permitting simulations on an idealized land planet are performed to understand whether soil moisture acts to support or impede the organization of convection. Initially, shallow circulations driven by differential radiative cooling induce a self-aggregation of the convection into a single band, as has become familiar from simulations over idealized sea surfaces. With time, however, the drying of the nonprecipitating region induces a reversal of the shallow circulation, drawing the flow at low levels from the precipitating to the nonprecipitating region. This causes the precipitating convection to move over the dry soils and reverses the polarity of the circulation. The precipitation replenishes these soils with moisture at the expense of the formerly wet soils which dry, until the process repeats itself. On longer timescales, this acts to homogenize the precipitation field. By analyzing the strength of the shallow circulations, the surface budget with its effects on the boundary layer properties, and the shape of the soil moisture resistance function, we demonstrate that the soil has to dry out significantly, for the here-tested resistance formulations below 15% of its water availability, to be able to alter the precipitation distribution. We expect such a process to broaden the distribution of precipitation over tropical land. This expectation is supported by observations which show that in drier years the monsoon rains move farther inland over Africa.

3.
J Adv Model Earth Syst ; 12(9): e2020MS002138, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33042391

RESUMO

The Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative-convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud-resolving models (CRMs), large eddy simulations (LES), and global cloud-resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self-aggregation in large domains and agree that self-aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self-aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.

4.
J Adv Model Earth Syst ; 11(10): 3148-3166, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31894190

RESUMO

A description of the daily cycle of oceanic shallow cumulus for undisturbed boreal winter conditions in the North Atlantic trades is presented. Modern investigation tools are used, including storm-resolving and large-eddy simulations, runover large domains in realistic configurations, and observations from in situ measurements and satellite-based retrievals. Models and observations clearly show pronounced diurnal variations in cloudiness, both near cloud base and below the trade inversion. The daily cycle reflects the evolution of two cloud populations: (i) a population of nonprecipitating small cumuli with weak vertical extent, which grows during the day and maximizes around sunset, and (ii) a population o deeper precipitating clouds with a stratiform cloud layer below the trade inversion, which grows during the night and maximizes just before sunrise. Previous studies have reported that cloudiness near cloud base undergoes weak variations on time scales longer than a day. However, here we find that it can vary strongly at the diurnal time scale. This daily cycle could serve as a critical test of the models' representation of the physical processes controlling cloudiness near cloud base, which is thought to be key for the determination of the Earth's climate response to warming.

5.
J Adv Model Earth Syst ; 11(4): 998-1038, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32742553

RESUMO

A new release of the Max Planck Institute for Meteorology Earth System Model version 1.2 (MPI-ESM1.2) is presented. The development focused on correcting errors in and improving the physical processes representation, as well as improving the computational performance, versatility, and overall user friendliness. In addition to new radiation and aerosol parameterizations of the atmosphere, several relatively large, but partly compensating, coding errors in the model's cloud, convection, and turbulence parameterizations were corrected. The representation of land processes was refined by introducing a multilayer soil hydrology scheme, extending the land biogeochemistry to include the nitrogen cycle, replacing the soil and litter decomposition model and improving the representation of wildfires. The ocean biogeochemistry now represents cyanobacteria prognostically in order to capture the response of nitrogen fixation to changing climate conditions and further includes improved detritus settling and numerous other refinements. As something new, in addition to limiting drift and minimizing certain biases, the instrumental record warming was explicitly taken into account during the tuning process. To this end, a very high climate sensitivity of around 7 K caused by low-level clouds in the tropics as found in an intermediate model version was addressed, as it was not deemed possible to match observed warming otherwise. As a result, the model has a climate sensitivity to a doubling of CO2 over preindustrial conditions of 2.77 K, maintaining the previously identified highly nonlinear global mean response to increasing CO2 forcing, which nonetheless can be represented by a simple two-layer model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA