Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Neurodegener ; 18(1): 59, 2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37649100

RESUMO

BACKGROUND: Amyloid-related imaging abnormalities (ARIA) have been identified as the most common and serious adverse events resulting from pathological changes in the cerebral vasculature during several recent anti-amyloid-ß (Aß) immunotherapy trials. However, the precise cellular and molecular mechanisms underlying how amyloid immunotherapy enhances cerebral amyloid angiopathy (CAA)-mediated alterations in vascular permeability and microhemorrhages are not currently understood. Interestingly, brain perivascular macrophages have been implicated in regulating CAA deposition and cerebrovascular function however, further investigations are required to understand how perivascular macrophages play a role in enhancing CAA-related vascular permeability and microhemorrhages associated with amyloid immunotherapy. METHODS: In this study, we examined immune responses induced by amyloid-targeting antibodies and CAA-induced microhemorrhages using histology and gene expression analyses in Alzheimer's disease (AD) mouse models and primary culture systems. RESULTS: In the present study, we demonstrate that anti-Aß (3D6) immunotherapy leads to the formation of an antibody immune complex with vascular amyloid deposits and induces the activation of CD169+ perivascular macrophages. We show that macrophages activated by antibody mediated Fc receptor signaling have increased expression of inflammatory signaling and extracellular matrix remodeling genes such as Timp1 and MMP9 in vitro and confirm these key findings in vivo. Finally, we demonstrate enhanced vascular permeability of plasma proteins and recruitment of inflammatory monocytes around vascular amyloid deposits, which are associated with hemosiderin deposits from cerebral microhemorrhages, suggesting the multidimensional roles of activated perivascular macrophages in response to Aß immunotherapy. CONCLUSIONS: In summary, our study establishes a connection between Aß antibodies engaged at CAA deposits, the activation of perivascular macrophages, and the upregulation of genes involved in vascular permeability. However, the implications of this phenomenon on the susceptibility to microhemorrhages remain to be fully elucidated. Further investigations are warranted to determine the precise role of CD169 + perivascular macrophages in enhancing CAA-mediated vascular permeability, extravasation of plasma proteins, and infiltration of immune cells associated with microhemorrhages.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Animais , Camundongos , Monócitos , Placa Amiloide , Peptídeos beta-Amiloides , Macrófagos , Proteínas Amiloidogênicas
2.
Mol Neurodegener ; 13(1): 65, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558641

RESUMO

BACKGROUND: Activation of microglia, the resident immune cells of the central nervous system, is a prominent pathological hallmark of Alzheimer's disease (AD). However, the gene expression changes underlying microglia activation in response to tau pathology remain elusive. Furthermore, it is not clear how murine gene expression changes relate to human gene expression networks. METHODS: Microglia cells were isolated from rTg4510 tau transgenic mice and gene expression was profiled using RNA sequencing. Four age groups of mice (2-, 4-, 6-, and 8-months) were analyzed to capture longitudinal gene expression changes that correspond to varying levels of pathology, from minimal tau accumulation to massive neuronal loss. Statistical and system biology approaches were used to analyze the genes and pathways that underlie microglia activation. Differentially expressed genes were compared to human brain co-expression networks. RESULTS: Statistical analysis of RNAseq data indicated that more than 4000 genes were differentially expressed in rTg4510 microglia compared to wild type microglia, with the majority of gene expression changes occurring between 2- and 4-months of age. These genes belong to four major clusters based on their temporal expression pattern. Genes involved in innate immunity were continuously up-regulated, whereas genes involved in the glutamatergic synapse were down-regulated. Up-regulated innate inflammatory pathways included NF-κB signaling, cytokine-cytokine receptor interaction, lysosome, oxidative phosphorylation, and phagosome. NF-κB and cytokine signaling were among the earliest pathways activated, likely driven by the RELA, STAT1 and STAT6 transcription factors. The expression of many AD associated genes such as APOE and TREM2 was also altered in rTg4510 microglia cells. Differentially expressed genes in rTg4510 microglia were enriched in human neurodegenerative disease associated pathways, including Alzheimer's, Parkinson's, and Huntington's diseases, and highly overlapped with the microglia and endothelial modules of human brain transcriptional co-expression networks. CONCLUSION: This study revealed temporal transcriptome alterations in microglia cells in response to pathological tau perturbation and provides insight into the molecular changes underlying microglia activation during tau mediated neurodegeneration.


Assuntos
Doença de Alzheimer/genética , Redes Reguladoras de Genes/genética , Predisposição Genética para Doença , Microglia/metabolismo , Proteínas tau/genética , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Expressão Gênica/fisiologia , Camundongos Transgênicos , Proteínas tau/metabolismo
3.
J Exp Med ; 213(5): 667-75, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27091843

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial receptor that recognizes changes in the lipid microenvironment, which may occur during amyloid ß (Aß) accumulation and neuronal degeneration in Alzheimer's disease (AD). Rare TREM2 variants that affect TREM2 function lead to an increased risk of developing AD. In murine models of AD, TREM2 deficiency prevents microglial clustering around Aß deposits. However, the origin of myeloid cells surrounding amyloid and the impact of TREM2 on Aß accumulation are a matter of debate. Using parabiosis, we found that amyloid-associated myeloid cells derive from brain-resident microglia rather than from recruitment of peripheral blood monocytes. To determine the impact of TREM2 deficiency on Aß accumulation, we examined Aß plaques in the 5XFAD model of AD at the onset of Aß-related pathology. At this early time point, Aß accumulation was similar in TREM2-deficient and -sufficient 5XFAD mice. However, in the absence of TREM2, Aß plaques were not fully enclosed by microglia; they were more diffuse, less dense, and were associated with significantly greater neuritic damage. Thus, TREM2 protects from AD by enabling microglia to surround and alter Aß plaque structure, thereby limiting neuritic damage.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Neuritos/metabolismo , Receptores Imunológicos/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Microglia/patologia , Monócitos/metabolismo , Monócitos/patologia , Neuritos/patologia , Receptores Imunológicos/genética
4.
Neuron ; 76(5): 908-20, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23217740

RESUMO

Aß Immunotherapy is a promising therapeutic approach for Alzheimer's disease. Preclinical studies demonstrate that plaque prevention is possible; however, the more relevant therapeutic removal of existing plaque has proven elusive. Monoclonal antibodies in development target both soluble and insoluble Aß peptide. We hypothesized that antibody specificity for deposited plaque was critical for plaque removal since soluble Aß peptide would block recognition of deposited forms. We developed a plaque-specific antibody that targets a modified Aß peptide (Aß(p3-42)), which showed robust clearance of pre-existing plaque without causing microhemorrhage. Interestingly, a comparator N-terminal Aß antibody 3D6, which binds both soluble and insoluble Aß(1-42), lacked efficacy for lowering existing plaque but manifested a significant microhemorrhage liability. Mechanistic studies suggested that the lack of efficacy for 3D6 was attributed to poor target engagement in plaques. These studies have profound implications for the development of therapeutic Aß antibodies for Alzheimer's disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Imunoglobulina G/uso terapêutico , Imunoterapia/métodos , Placa Amiloide/imunologia , Fatores Etários , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hemorragia/induzido quimicamente , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Imunoglobulina G/efeitos adversos , Camundongos , Camundongos Transgênicos , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA