Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Allergy ; 75(6): 1361-1370, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31856334

RESUMO

INTRODUCTION: Eosinophils have been long implicated in antiparasite immunity and allergic diseases and, more recently, in regulating adipose tissue homeostasis. The metabolic processes that govern eosinophils, particularly upon activation, are unknown. METHODS: Peripheral blood eosinophils were isolated for the analysis of metabolic processes using extracellular flux analysis and individual metabolites by stable isotope tracer analysis coupled to gas chromatography-mass spectrometry following treatment with IL-3, IL-5 or granulocyte-macrophage colony-stimulating factor (GM-CSF). Eosinophil metabolism was elucidated using pharmacological inhibitors. RESULTS: Human eosinophils engage a largely glycolytic metabolism but also employ mitochondrial metabolism. Cytokine stimulation generates citric acid cycle (TCA) intermediates from both glucose and glutamine revealing this previously unknown role for mitochondria upon eosinophil activation. We further show that the metabolic programme driven by IL-5 is dependent on the STAT5/PI3K/Akt signalling axis and that nicotinamide adenine dinucleotide phosphate oxidase (NOX)-dependent ROS production might be a driver of mitochondrial metabolism upon eosinophil activation. CONCLUSION: We demonstrate for the first time that eosinophils are capable of metabolic plasticity, evidenced by increased glucose-derived lactate production upon ROS inhibition. Collectively, this study reveals a role for both glycolysis and mitochondrial metabolism in cytokine-stimulated eosinophils. Selective targeting of eosinophil metabolism may be of therapeutic benefit in eosinophil-mediated diseases and regulation of tissue homeostasis.


Assuntos
Eosinófilos , Interleucina-5 , Células Cultivadas , Ácido Cítrico , Ciclo do Ácido Cítrico , Glicólise , Humanos , Interleucina-3 , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio
2.
Blood ; 122(19): 3322-30, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24089327

RESUMO

Excessive production of reactive oxygen species (ROS) is frequently observed in cancer and is known to strongly influence hematopoietic cell function. Here we report that extracellular ROS production is strongly elevated (mean >10-fold) in >60% of acute myeloid leukemia (AML) patients and that this increase is attributable to constitutive activation of nicotinamide adenine dinucleotide phosphate oxidases (NOX). In contrast, overproduction of mitochondrial ROS was rarely observed. Elevated ROS was found to be associated with lowered glutathione levels and depletion of antioxidant defense proteins. We also show for the first time that the levels of ROS generated were able to strongly promote the proliferation of AML cell lines, primary AML blasts, and, to a lesser extent, normal CD34(+) cells, and that the response to ROS is limited by the activation of the oxidative stress pathway mediated though p38(MAPK). Consistent with this, we observed that p38(MAPK) responses were attenuated in patients expressing high levels of ROS. These data show that overproduction of NOX-derived ROS can promote the proliferation of AML blasts and that they also develop mechanisms to suppress the stress signaling that would normally limit this response. Together these adaptations would be predicted to confer a competitive advantage to the leukemic clone.


Assuntos
Leucemia Mieloide Aguda/metabolismo , Leucócitos Mononucleares/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Apoptose , Estudos de Casos e Controles , Proliferação de Células , Regulação Leucêmica da Expressão Gênica , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucócitos Mononucleares/patologia , NADPH Oxidases/genética , Estresse Oxidativo , Cultura Primária de Células , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
Haematologica ; 100(8): 1076-85, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25840602

RESUMO

Inactivation of the Ataxia Telangiectasia Mutated gene in chronic lymphocytic leukemia results in resistance to p53-dependent apoptosis and inferior responses to treatment with DNA damaging agents. Hence, p53-independent strategies are required to target Ataxia Telangiectasia Mutated-deficient chronic lymphocytic leukemia. As Ataxia Telangiectasia Mutated has been implicated in redox homeostasis, we investigated the effect of the Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia genotype on cellular responses to oxidative stress with a view to therapeutic targeting. We found that in comparison to Ataxia Telangiectasia Mutated-wild type chronic lymphocytic leukemia, pro-oxidant treatment of Ataxia Telangiectasia Mutated-null cells led to reduced binding of NF-E2 p45-related factor-2 to antioxidant response elements and thus decreased expression of target genes. Furthermore, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia cells contained lower levels of antioxidants and elevated mitochondrial reactive oxygen species. Consequently, Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia, but not tumors with 11q deletion or TP53 mutations, exhibited differentially increased sensitivity to pro-oxidants both in vitro and in vivo. We found that cell death was mediated by a p53- and caspase-independent mechanism associated with apoptosis inducing factor activity. Together, these data suggest that defective redox-homeostasis represents an attractive therapeutic target for Ataxia Telangiectasia Mutated-null chronic lymphocytic leukemia.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Homozigoto , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Mutação , Oxidantes/metabolismo , Fenótipo , Animais , Antioxidantes/metabolismo , Apoptose , Caspases/metabolismo , Modelos Animais de Doenças , Regulação Leucêmica da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo , Elementos de Resposta , Superóxidos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Blood ; 115(6): 1238-46, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20007804

RESUMO

Excessive production of reactive oxygen species (ROS) is a feature of human malignancy and is often triggered by activation of oncogenes such as activated Ras. ROS act as second messengers and can influence a variety of cellular process including growth factor responses and cell survival. We have examined the contribution of ROS production to the effects of N-Ras(G12D) and H-Ras(G12V) on normal human CD34(+) progenitor cells. Activated Ras strongly up-regulated the production of both superoxide and hydrogen peroxide through the stimulation of NADPH oxidase (NOX) activity, without affecting the expression of endogenous antioxidants or the production of mitochondrially derived ROS. Activated Ras also promoted both the survival and the growth factor-independent proliferation of CD34(+) cells. Using oxidase inhibitors and antioxidants, we found that excessive ROS production by these cells did not contribute to their enhanced survival; rather, ROS promoted their growth factor-independent proliferation. Although Ras-induced ROS production specifically activated the p38(MAPK) oxidative stress response, this failed to induce expression of the cell-cycle inhibitor, p16(INK4A); instead, ROS promoted the expression of D cyclins. These data are the first to show that excessive ROS production in the context of oncogene activation can promote proliferative responses in normal human hematopoietic progenitor cells.


Assuntos
Antígenos CD34/metabolismo , Proliferação de Células , Genes ras/fisiologia , Células-Tronco Hematopoéticas/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/metabolismo , Western Blotting , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo , Transdução de Sinais , Superóxidos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Cancer Res ; 80(5): 937-949, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31862780

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous clonal disorder with a poor clinical outcome. Previously, we showed that overproduction of reactive oxygen species (ROS), arising from constitutive activation of NOX2 oxidase, occurs in >60% of patients with AML and that ROS production promotes proliferation of AML cells. We show here that the process most significantly affected by ROS overproduction is glycolysis. Whole metabolome analysis of 20 human primary AML showed that blasts generating high levels of ROS have increased glucose uptake and correspondingly increased glucose metabolism. In support of this, exogenous ROS increased glucose consumption while inhibition of NOX2 oxidase decreased glucose consumption. Mechanistically, ROS promoted uncoupling protein 2 (UCP2) protein expression and phosphorylation of AMPK, upregulating the expression of a key regulatory glycolytic enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3). Overexpression of PFKFB3 promoted glucose uptake and cell proliferation, whereas downregulation of PFKFB3 strongly suppressed leukemia growth both in vitro and in vivo in the NSG model. These experiments provide direct evidence that oxidase-derived ROS promotes the growth of leukemia cells via the glycolytic regulator PFKFB3. Targeting PFKFB3 may therefore present a new mode of therapy for this disease with a poor outcome. SIGNIFICANCE: These findings show that ROS generated by NOX2 in AML cells promotes glycolysis by activating PFKFB3 and suggest PFKFB3 as a novel therapeutic target in AML.


Assuntos
Proliferação de Células , Glicólise , Leucemia Mieloide Aguda/patologia , Fosfofrutoquinase-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Medula Óssea/patologia , Linhagem Celular Tumoral , Feminino , Regulação Leucêmica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Leucemia Mieloide Aguda/metabolismo , Masculino , Metabolômica , Camundongos , NADPH Oxidase 2/metabolismo , Fosfofrutoquinase-2/genética , Cultura Primária de Células , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Leukemia ; 34(2): 427-440, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31611628

RESUMO

Inappropriate localization of proteins can interfere with normal cellular function and drive tumor development. To understand how this contributes to the development of acute myeloid leukemia (AML), we compared the nuclear proteome and transcriptome of AML blasts with normal human CD34+ cells. Analysis of the proteome identified networks and processes that significantly affected transcription regulation including misexpression of 11 transcription factors with seven proteins not previously implicated in AML. Transcriptome analysis identified changes in 40 transcription factors but none of these were predictive of changes at the protein level. The highest differentially expressed protein in AML nuclei compared with normal CD34+ nuclei (not previously implicated in AML) was S100A4. In an extended cohort, we found that over-expression of nuclear S100A4 was highly prevalent in AML (83%; 20/24 AML patients). Knock down of S100A4 in AML cell lines strongly impacted their survival whilst normal hemopoietic stem progenitor cells were unaffected. These data are the first analysis of the nuclear proteome in AML and have identified changes in transcription factor expression or regulation of transcription that would not have been seen at the mRNA level. These data also suggest that S100A4 is essential for AML survival and could be a therapeutic target in AML.


Assuntos
Núcleo Celular/genética , Leucemia Mieloide Aguda/genética , Proteoma/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Transcriptoma/genética , Adolescente , Adulto , Idoso , Antígenos CD34/genética , Proliferação de Células/genética , Células Cultivadas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Proteômica/métodos
7.
Methods Mol Biol ; 1990: 53-70, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148062

RESUMO

Increased production of reactive oxygen species (ROS) and deficiencies in cellular antioxidant defenses are the principal causes of cellular oxidative stress. ROS can react with a variety intracellular molecules, including redox active cysteine thiols (-SH) within proteins. Cysteine thiols can occupy several redox states and conversion between them is highly dynamic during, for example, cell growth, resulting in modification and subsequent loss of the "reduced thiol" form (-SH or -S-). The challenge lies with detecting and measuring thiol redox status inside viable heterogeneous cell populations (e.g., peripheral blood mononuclear cells (PBMCs)). Here we describe a flow cytometric approach for the evaluation of intracellular thiol redox status in human CD3+ T cells within a viable PBMC preparation. Using the thiol reactive probe, fluorescein-5 maleimide (F5M), we demonstrate that loss of reduced intracellular thiol correlates with a decrease in F5M fluorescence. We also detected a loss of F5M fluorescence in Jurkat cell cultures exposed to exogenous H2O2 generated by glucose oxidase. Since F5M binds irreversibly to reduced cysteine thiols, cells may be sorted based on F5M fluorescence intensity and redox active proteins can subsequently be extracted and separated using SDS-PAGE. This final step facilitates identification of redox active proteins from individual cell populations in live heterogeneous cell mixes using proteomic analysis.


Assuntos
Citometria de Fluxo/métodos , Leucócitos Mononucleares/metabolismo , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Linfócitos T/metabolismo , Fluoresceínas/química , Humanos , Células Jurkat , Oxirredução
8.
MethodsX ; 5: 1473-1483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505701

RESUMO

Flow cytometric methods for detecting and quantifying reduced intracellular thiol content using fluorescein-5-maleimide (F5M) in viable eukaryotic cells date back to 1983 (Durand and Olive [1]). There has been little development in these methodologies since that time, a period that has witnessed huge technological advances, particularly with the emergence of digital multi-parameter flow cytometric systems. Concurrent advancement in our understanding of redox regulation within eukaryotic cellular systems has also followed, whereby it is now accepted that cysteine thiols partake in redox reactions, which regulate protein activity and function (Groitl and Jakob (2014), Won et al. (2012)). Moreover, we are at the dawn of a new era in redox biology whereby the importance of 'reductive stress' in eukaryotic cellular systems is gathering momentum (Wadley et al. (2018) [4]). It is therefore critical that methods be continually advanced to better understand these concepts in more detail at the cellular level. Flow cytometry is a powerful technique that may be used for this purpose. Henceforth we have rejuvenated these methods to address modern scientific questions. In this paper, essential detail is provided on: •The adaption of a protocol initially described by Durand and Olive [1] for use with modern digital flow cytometer configurations. Here we provide optimal conditions for labelling intracellular thiols with F5M for detection using digital flow cytometers. Our modifications avoid the use of methanol fixation thus preserving cell viability in single cell suspension cultures.•Demonstration that flow cytometry can detect the gain and loss of reduced intracellular thiols in cells exposed to physiological doses of hydrogen peroxide mediated by glucose oxidase (Hole et al. (2013) [5]).•Validation of F5M protein labelling by coupling method to confocal microscopy and downstream proteomics, thus permitting a powerful experimental platform for potential use with next generation flow cytometry e.g. CyTOF (Lin and Maecker (2018) [6]).

9.
PLoS One ; 11(9): e0163291, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27669008

RESUMO

In acute myeloid leukemia (AML) quiescence and low oxidative state, linked to BCL2 mitochondrial regulation, endow leukemic stem cells (LSC) with treatment-resistance. LSC in CD34+ and more mature CD34- AML have heterogeneous immunophenotypes overlapping with normal stem/progenitor cells (SPC) but may be differentiated by functional markers. We therefore investigated the oxidative/reactive oxygen species (ROS) profile, its relationship with cell-cycle/BCL2 for normal SPC, and whether altered in AML and myelodysplasia (MDS). In control BM (n = 24), ROS levels were highest in granulocyte-macrophage progenitors (GMP) and CD34- myeloid precursors but megakaryocyte-erythroid progenitors had equivalent levels to CD34+CD38low immature-SPC although they were ki67high. BCL2 upregulation was specific to GMPs. This profile was also observed for CD34+SPC in MDS-without-excess-blasts (MDS-noEB, n = 12). Erythroid CD34- precursors were, however, abnormally ROS-high in MDS-noEB, potentially linking oxidative stress to cell loss. In pre-treatment AML (n = 93) and MDS-with-excess-blasts (MDS-RAEB) (n = 14), immunophenotypic mature-SPC had similar ROS levels to co-existing immature-SPC. However ROS levels varied between AMLs; Flt3ITD+/NPM1wild-type CD34+SPC had higher ROS than NPM1mutated CD34+ or CD34- SPC. An aberrant ki67lowBCL2high immunophenotype was observed in CD34+AML (most prominent in Flt3ITD AMLs) but also in CD34- AMLs and MDS-RAEB, suggesting a shared redox/pro-survival adaptation. Some patients had BCL2 overexpression in CD34+ ROS-high as well as ROS-low fractions which may be indicative of poor early response to standard chemotherapy. Thus normal SPC subsets have distinct ROS, cell-cycle, BCL2 profiles that in AML /MDS-RAEB are decoupled from maturation. The combined profile of these functional properties in AML subpopulations may be relevant to differential treatment resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA