RESUMO
Parkinson's disease (PD) and progressive supranuclear palsy (PSP) both impair response inhibition, exacerbating impulsivity. Inhibitory control deficits vary across individuals and are linked with worse prognosis, and lack improvement on dopaminergic therapy. Motor and cognitive control are associated with noradrenergic innervation of the cortex, arising from the locus coeruleus (LC) noradrenergic system. Here we test the hypothesis that structural variation of the LC explains response inhibition deficits in PSP and PD. Twenty-four people with idiopathic PD, 14 with PSP-Richardson's syndrome, and 24 age- and sex-matched controls undertook a stop-signal task and ultrahigh field 7T magnetization-transfer-weighted imaging of the LC. Parameters of "race models" of go- versus stop-decisions were estimated using hierarchical Bayesian methods to quantify the cognitive processes of response inhibition. We tested the multivariate relationship between LC integrity and model parameters using partial least squares. Both disorders impaired response inhibition at the group level. PSP caused a distinct pattern of abnormalities in inhibitory control with a paradoxically reduced threshold for go responses, but longer nondecision times, and more lapses of attention. The variation in response inhibition correlated with the variability of LC integrity across participants in both clinical groups. Structural imaging of the LC, coupled with behavioral modeling in parkinsonian disorders, confirms that LC integrity is associated with response inhibition and LC degeneration contributes to neurobehavioral changes. The noradrenergic system is therefore a promising target to treat impulsivity in these conditions. The optimization of noradrenergic treatment is likely to benefit from stratification according to LC integrity.SIGNIFICANCE STATEMENT Response inhibition deficits contribute to clinical symptoms and poor outcomes in people with Parkinson's disease and progressive supranuclear palsy. We used cognitive modeling of performance of a response inhibition task to identify disease-specific mechanisms of abnormal inhibitory control. Response inhibition in both patient groups was associated with the integrity of the noradrenergic locus coeruleus, which we measured in vivo using ultra-high field MRI. We propose that the imaging biomarker of locus coeruleus integrity provides a trans-diagnostic tool to explain individual differences in response inhibition ability beyond the classic nosological borders and diagnostic criteria. Our data suggest a potential new stratified treatment approach for Parkinson's disease and progressive supranuclear palsy.
Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/psicologia , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Locus Cerúleo , Teorema de BayesRESUMO
OBJECTIVE: Synaptic loss is an early feature of neurodegenerative disease models, and is severe in post mortem clinical studies, including frontotemporal dementia. Positron emission tomography (PET) with radiotracers that bind to synaptic vesicle glycoprotein 2A enables quantification of synaptic density in vivo. This study used [11 C]UCB-J PET in participants with behavioral variant frontotemporal dementia (bvFTD), testing the hypothesis that synaptic loss is severe and related to clinical severity. METHODS: Eleven participants with clinically probable bvFTD and 25 age- and sex-matched healthy controls were included. Participants underwent dynamic [11 C]UCB-J PET, structural magnetic resonance imaging, and a neuropsychological battery, including the revised Addenbrooke Cognitive Examination, and INECO frontal screening. General linear models compared [11 C]UCB-J binding potential maps and gray matter volume between groups, and assessed associations between synaptic density and clinical severity in patients. Analyses were also performed using partial volume corrected [11 C]UCB-J binding potential from regions of interest (ROIs). RESULTS: Patients with bvFTD showed severe synaptic loss compared to controls. [11 C]UCB-J binding was reduced bilaterally in medial and dorsolateral frontal regions, inferior frontal gyri, anterior and posterior cingulate gyrus, insular cortex, and medial temporal lobe. Synaptic loss in the frontal and cingulate regions correlated significantly with cognitive impairments. Synaptic loss was more severe than atrophy. Results from ROI-based analyses mirrored the voxelwise results. INTERPRETATION: In accordance with preclinical models, and human postmortem evidence, there is widespread frontotemporal loss of synapses in symptomatic bvFTD, in proportion to severity. [11 C]UCB-J PET could support translational studies and experimental medicine strategies for new disease-modifying treatments for neurodegeneration. ANN NEUROL 2023;93:142-154.
Assuntos
Demência Frontotemporal , Doenças Neurodegenerativas , Doença de Pick , Humanos , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Lobo Frontal , Encéfalo/metabolismoRESUMO
BACKGROUND/OBJECTIVE: The corticobasal syndrome (CBS) is a complex asymmetric movement disorder, with cognitive impairment. Although commonly associated with the primary 4-repeat-tauopathy of corticobasal degeneration, clinicopathological correlation is poor, and a significant proportion is due to Alzheimer's disease (AD). Synaptic loss is a pathological feature of many clinical and preclinical tauopathies. We therefore measured the degree of synaptic loss in patients with CBS and tested whether synaptic loss differed according to ß-amyloid status. METHODS: Twenty-five people with CBS, and 32 age-/sex-/education-matched healthy controls participated. Regional synaptic density was estimated by [11C]UCB-J non-displaceable binding potential (BPND), AD-tau pathology by [18F]AV-1451 BPND, and gray matter volume by T1-weighted magnetic resonance imaging. Participants with CBS had ß-amyloid imaging with 11C-labeled Pittsburgh Compound-B ([11C]PiB) positron emission tomography. Symptom severity was assessed with the progressive supranuclear palsy-rating-scale, the cortical basal ganglia functional scale, and the revised Addenbrooke's Cognitive Examination. Regional differences in BPND and gray matter volume between groups were assessed by ANOVA. RESULTS: Compared to controls, patients with CBS had higher [18F]AV-1451 uptake, gray matter volume loss, and reduced synaptic density. Synaptic loss was more severe and widespread in the ß-amyloid negative group. Asymmetry of synaptic loss was in line with the clinically most affected side. DISCUSSION: Distinct patterns of [11C]UCB-J and [18F]AV-1451 binding and gray matter volume loss, indicate differences in the pathogenic mechanisms of CBS according to whether it is associated with the presence of Alzheimer's disease or not. This highlights the potential for different therapeutic strategies in CBSs. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Sinapses , Humanos , Masculino , Feminino , Idoso , Peptídeos beta-Amiloides/metabolismo , Pessoa de Meia-Idade , Sinapses/patologia , Sinapses/metabolismo , Degeneração Corticobasal/patologia , Degeneração Corticobasal/metabolismo , Degeneração Corticobasal/diagnóstico por imagem , Proteínas tau/metabolismo , Imageamento por Ressonância Magnética , Substância Cinzenta/patologia , Substância Cinzenta/metabolismo , Substância Cinzenta/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , CarbolinasRESUMO
Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive impairment even in the absence of gross atrophy. Currently, for human disease there are few formal models to explain how cortical networks underlying cognition are affected by synaptic loss. We advocate that biophysical models of neurophysiology offer both a bridge from preclinical to clinical models of pathology and quantitative assays for experimental medicine. Such biophysical models can also disclose hidden neuronal dynamics generating neurophysiological observations such as EEG and magnetoencephalography. Here, we augment a biophysically informed mesoscale model of human cortical function by inclusion of synaptic density estimates as captured by 11C-UCB-J PET, and provide insights into how regional synapse loss affects neurophysiology. We use the primary tauopathy of progressive supranuclear palsy (Richardson's syndrome) as an exemplar condition, with high clinicopathological correlations. Progressive supranuclear palsy causes a marked change in cortical neurophysiology in the presence of mild cortical atrophy and is associated with a decline in cognitive functions associated with the frontal lobe. Using parametric empirical Bayesian inversion of a conductance-based canonical microcircuit model of magnetoencephalography data, we show that the inclusion of regional synaptic density-as a subject-specific prior on laminar-specific neuronal populations-markedly increases model evidence. Specifically, model comparison suggests that a reduction in synaptic density in inferior frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted individual differences in behaviour, demonstrating the link between synaptic loss, neurophysiology and cognitive deficits. The method we demonstrate is not restricted to progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched dynamic causal models can be used to assess the mechanisms of other neurological disorders, with diverse non-invasive measures of pathology, and is suitable to test the effects of experimental pharmacology.
Assuntos
Transtornos Cognitivos , Disfunção Cognitiva , Paralisia Supranuclear Progressiva , Humanos , Paralisia Supranuclear Progressiva/patologia , Teorema de Bayes , Disfunção Cognitiva/complicações , Atrofia/complicaçõesRESUMO
The advent of clinical trials of disease-modifying agents for neurodegenerative disease highlights the need for evidence-based end point selection. Here we report the longitudinal PROSPECT-M-UK study of progressive supranuclear palsy (PSP), corticobasal syndrome (CBS), multiple system atrophy (MSA) and related disorders, to compare candidate clinical trial end points. In this multicentre UK study, participants were assessed with serial questionnaires, motor examination, neuropsychiatric and MRI assessments at baseline, 6 and 12 months. Participants were classified by diagnosis at baseline and study end, into Richardson syndrome, PSP-subcortical (PSP-parkinsonism and progressive gait freezing subtypes), PSP-cortical (PSP-frontal, PSP-speech and language and PSP-CBS subtypes), MSA-parkinsonism, MSA-cerebellar, CBS with and without evidence of Alzheimer's disease pathology and indeterminate syndromes. We calculated annual rate of change, with linear mixed modelling and sample sizes for clinical trials of disease-modifying agents, according to group and assessment type. Two hundred forty-three people were recruited [117 PSP, 68 CBS, 42 MSA and 16 indeterminate; 138 (56.8%) male; age at recruitment 68.7 ± 8.61 years]. One hundred and fifty-nine completed the 6-month assessment (82 PSP, 27 CBS, 40 MSA and 10 indeterminate) and 153 completed the 12-month assessment (80 PSP, 29 CBS, 35 MSA and nine indeterminate). Questionnaire, motor examination, neuropsychiatric and neuroimaging measures declined in all groups, with differences in longitudinal change between groups. Neuroimaging metrics would enable lower sample sizes to achieve equivalent power for clinical trials than cognitive and functional measures, often achieving N < 100 required for 1-year two-arm trials (with 80% power to detect 50% slowing). However, optimal outcome measures were disease-specific. In conclusion, phenotypic variance within PSP, CBS and MSA is a major challenge to clinical trial design. Our findings provide an evidence base for selection of clinical trial end points, from potential functional, cognitive, clinical or neuroimaging measures of disease progression.
Assuntos
Atrofia de Múltiplos Sistemas , Transtornos Parkinsonianos , Paralisia Supranuclear Progressiva , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Feminino , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/tratamento farmacológico , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Imageamento por Ressonância Magnética , Reino UnidoRESUMO
BACKGROUND: Synaptic loss is characteristic of many neurodegenerative diseases; it occurs early and is strongly related to functional deficits. OBJECTIVE: In this longitudinal observational study, we determine the rate at which synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and we test the relationship with disease progression. METHODS: Our cross-sectional cohort included 32 participants with probable PSP and 16 with probable CBD (all amyloid-negative corticobasal syndrome), recruited from tertiary care centers in the United Kingdom, and 33 sex- and age-matched healthy control subjects. Synaptic density was estimated by positron emission tomography imaging with the radioligand [11 C]UCB-J that binds synaptic vesicle 2A. Clinical severity and cognition were assessed by the PSP Rating Scale and the Addenbrooke's cognitive examination. Regional [11 C]UCB-J nondisplaceable binding potential was estimated in Hammersmith Atlas regions of interest. Twenty-two participants with PSP/CBD had a follow-up [11 C]UCB-J positron emission tomography scan after 1 year. We calculated the annualized change in [11 C]UCB-J nondisplaceable binding potential and correlated this with the change in clinical severity. RESULTS: We found significant annual synaptic loss within the frontal lobe (-3.5%, P = 0.03) and the right caudate (-3.9%, P = 0.046). The degree of longitudinal synaptic loss within the frontal lobe correlated with the rate of change in the PSP Rating Scale (R = 0.47, P = 0.03) and cognition (Addenbrooke's Cognitive Examination-Revised, R = -0.62, P = 0.003). CONCLUSIONS: We provide in vivo evidence for rapid progressive synaptic loss, correlating with clinical progression in primary tauopathies. Synaptic loss may be an important therapeutic target and outcome variable for early-phase clinical trials of disease-modifying treatments. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Transtornos dos Movimentos , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Estudos Transversais , Tomografia por Emissão de Pósitrons/métodos , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico , Transtornos dos Movimentos/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismoRESUMO
Apathy is a debilitating feature of many neuropsychiatric diseases, that is typically described as a reduction of goal-directed behaviour. Despite its prevalence and prognostic importance, the mechanisms underlying apathy remain controversial. Degeneration of the locus coeruleus-noradrenaline system is known to contribute to motivational deficits, including apathy. In healthy people, noradrenaline has been implicated in signalling the uncertainty of expectations about the environment. We proposed that noradrenergic deficits contribute to apathy by modulating the relative weighting of prior beliefs about action outcomes. We tested this hypothesis in the clinical context of Parkinson's disease, given its associations with apathy and noradrenergic dysfunction. Participants with mild-to-moderate Parkinson's disease (N = 17) completed a randomised double-blind, placebo-controlled, crossover study with 40 mg of the noradrenaline reuptake inhibitor atomoxetine. Prior weighting was inferred from psychophysical analysis of performance in an effort-based visuomotor task, and was confirmed as negatively correlated with apathy. Locus coeruleus integrity was assessed in vivo using magnetisation transfer imaging at ultra-high field 7T. The effect of atomoxetine depended on locus coeruleus integrity: participants with a more degenerate locus coeruleus showed a greater increase in prior weighting on atomoxetine versus placebo. The results indicate a contribution of the noradrenergic system to apathy and potential benefit from noradrenergic treatment of people with Parkinson's disease, subject to stratification according to locus coeruleus integrity. More broadly, these results reconcile emerging predictive processing accounts of the role of noradrenaline in goal-directed behaviour with the clinical symptom of apathy and its potential pharmacological treatment.
Assuntos
Apatia , Doença de Parkinson , Cloridrato de Atomoxetina/farmacologia , Estudos Cross-Over , Humanos , Norepinefrina , Doença de Parkinson/complicações , Doença de Parkinson/tratamento farmacológicoRESUMO
The relationship between in vivo synaptic density and molecular pathology in primary tauopathies is key to understanding the impact of tauopathy on functional decline and in informing new early therapeutic strategies. In this cross-sectional observational study, we determine the in vivo relationship between synaptic density and molecular pathology in the primary tauopathies of progressive supranuclear palsy and corticobasal degeneration as a function of disease severity. Twenty-three patients with progressive supranuclear palsy and 12 patients with corticobasal syndrome were recruited from a tertiary referral centre. Nineteen education-, sex- and gender-matched control participants were recruited from the National Institute for Health Research 'Join Dementia Research' platform. Cerebral synaptic density and molecular pathology, in all participants, were estimated using PET imaging with the radioligands 11C-UCB-J and 18F-AV-1451, respectively. Patients with corticobasal syndrome also underwent amyloid PET imaging with 11C-PiB to exclude those with likely Alzheimer's pathology-we refer to the amyloid-negative cohort as having corticobasal degeneration, although we acknowledge other underlying pathologies exist. Disease severity was assessed with the progressive supranuclear palsy rating scale; regional non-displaceable binding potentials of 11C-UCB-J and 18F-AV-1451 were estimated in regions of interest from the Hammersmith Atlas, excluding those with known off-target binding for 18F-AV-1451. As an exploratory analysis, we also investigated the relationship between molecular pathology in cortical brain regions and synaptic density in subcortical areas. Across brain regions, there was a positive correlation between 11C-UCB-J and 18F-AV-1451 non-displaceable binding potentials (ß = 0.4, t = 3.6, P = 0.001), independent of age or time between PET scans. However, this correlation became less positive as a function of disease severity in patients (ß = -0.02, t = -2.9, P = 0.007, R = -0.41). Between regions, cortical 18F-AV-1451 binding was negatively correlated with synaptic density in subcortical areas (caudate nucleus, putamen). Brain regions with higher synaptic density are associated with a higher 18F-AV-1451 binding in progressive supranuclear palsy/corticobasal degeneration, but this association diminishes with disease severity. Moreover, higher cortical 18F-AV-1451 binding correlates with lower subcortical synaptic density. Longitudinal imaging is required to confirm the mediation of synaptic loss by molecular pathology. However, the effect of disease severity suggests a biphasic relationship between synaptic density and molecular pathology with synapse-rich regions vulnerable to accrual of pathological aggregates, followed by a loss of synapses in response to the molecular pathology. Given the importance of synaptic function for cognition and action, our study elucidates the pathophysiology of primary tauopathies and may inform the design of future clinical trials.
Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Doença de Alzheimer/patologia , Encéfalo/patologia , Carbolinas , Radioisótopos de Carbono/metabolismo , Estudos Transversais , Humanos , Patologia Molecular , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Pirrolidinonas , Paralisia Supranuclear Progressiva/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismoRESUMO
BACKGROUND: Neurodegeneration in the locus coeruleus (LC) contributes to neuropsychiatric symptoms in both Parkinson's disease (PD) and progressive supranuclear palsy (PSP). Spatial precision of LC imaging is improved with ultrahigh field 7 T magnetic resonance imaging. OBJECTIVES: This study aimed to characterize the spatial patterns of LC pathological change in PD and PSP and the transdiagnostic relationship between LC signals and neuropsychiatric symptoms. METHODS: Twenty-five people with idiopathic PD, 14 people with probable PSP-Richardson's syndrome, and 24 age-matched healthy controls were recruited. Participants underwent clinical assessments and high-resolution (0.08 mm3 ) 7 T-magnetization-transfer imaging to measure LC integrity in vivo. Spatial patterns of LC change were obtained using subregional mean contrast ratios and significant LC clusters; we further correlated the LC contrast with measures of apathy and cognition, using both mixed-effect models and voxelwise analyses. RESULTS: PSP and PD groups showed significant LC degeneration in the caudal subregion relative to controls. Mixed-effect models revealed a significant interaction between disease-group and apathy-related correlations with LC degeneration (ß = 0.46, SE [standard error] = 0.17, F(1, 35) = 7.46, P = 0.01), driven by a strong correlation in PSP (ß = -0.58, SE = 0.21, t(35) = -2.76, P = 0.009). Across both disease groups, voxelwise analyses indicated that lower LC integrity was associated with worse cognition and higher apathy scores. CONCLUSIONS: The relationship between LC and nonmotor symptoms highlights a role for noradrenergic dysfunction across both PD and PSP, confirming the potential for noradrenergic therapeutic strategies to address transdiagnostic cognitive and behavioral features in neurodegenerative disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Locus Cerúleo , Transtornos Parkinsonianos , Apatia/fisiologia , Cognição/fisiologia , Humanos , Locus Cerúleo/diagnóstico por imagem , Locus Cerúleo/patologia , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Transtornos Parkinsonianos/diagnóstico por imagem , Transtornos Parkinsonianos/fisiopatologia , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/fisiopatologiaRESUMO
Many aspects of cognition and behaviour are regulated by noradrenergic projections to the forebrain originating from the locus coeruleus, acting through alpha and beta adrenoreceptors. Loss of these projections is common in neurodegenerative diseases and contributes to their cognitive and behavioural deficits. We review the evidence for a noradrenergic modulation of cognition in its contribution to Alzheimer's disease, Parkinson's disease and other cognitive disorders. We discuss the advances in human imaging and computational methods that quantify the locus coeruleus and its function in humans, and highlight the potential for new noradrenergic treatment strategies.
Assuntos
Transtornos Cognitivos/metabolismo , Cognição/fisiologia , Locus Cerúleo/metabolismo , Norepinefrina/metabolismo , HumanosRESUMO
Cognitive decline is a common feature of Parkinson's disease, and many of these cognitive deficits fail to respond to dopaminergic therapy. Therefore, targeting other neuromodulatory systems represents an important therapeutic strategy. Among these, the locus coeruleus-noradrenaline system has been extensively implicated in response inhibition deficits. Restoring noradrenaline levels using the noradrenergic reuptake inhibitor atomoxetine can improve response inhibition in some patients with Parkinson's disease, but there is considerable heterogeneity in treatment response. Accurately predicting the patients who would benefit from therapies targeting this neurotransmitter system remains a critical goal, in order to design the necessary clinical trials with stratified patient selection to establish the therapeutic potential of atomoxetine. Here, we test the hypothesis that integrity of the noradrenergic locus coeruleus explains the variation in improvement of response inhibition following atomoxetine. In a double-blind placebo-controlled randomized crossover design, 19 patients with Parkinson's disease completed an acute psychopharmacological challenge with 40 mg of oral atomoxetine or placebo. A stop-signal task was used to measure response inhibition, with stop-signal reaction times obtained through hierarchical Bayesian estimation of an ex-Gaussian race model. Twenty-six control subjects completed the same task without undergoing the drug manipulation. In a separate session, patients and controls underwent ultra-high field 7 T imaging of the locus coeruleus using a neuromelanin-sensitive magnetization transfer sequence. The principal result was that atomoxetine improved stop-signal reaction times in those patients with lower locus coeruleus integrity. This was in the context of a general impairment in response inhibition, as patients on placebo had longer stop-signal reaction times compared to controls. We also found that the caudal portion of the locus coeruleus showed the largest neuromelanin signal decrease in the patients compared to controls. Our results highlight a link between the integrity of the noradrenergic locus coeruleus and response inhibition in patients with Parkinson's disease. Furthermore, they demonstrate the importance of baseline noradrenergic state in determining the response to atomoxetine. We suggest that locus coeruleus neuromelanin imaging offers a marker of noradrenergic capacity that could be used to stratify patients in trials of noradrenergic therapy and to ultimately inform personalized treatment approaches.
Assuntos
Inibidores da Captação Adrenérgica/farmacologia , Cloridrato de Atomoxetina/farmacologia , Inibição Psicológica , Locus Cerúleo/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Idoso , Método Duplo-Cego , Feminino , Humanos , Locus Cerúleo/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tempo de Reação/efeitos dos fármacosRESUMO
The clinical syndromes caused by frontotemporal lobar degeneration are heterogeneous, including the behavioural variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy. Although pathologically distinct, they share many behavioural, cognitive and physiological features, which may in part arise from common deficits of major neurotransmitters such as γ-aminobutyric acid (GABA). Here, we quantify the GABAergic impairment and its restoration with dynamic causal modelling of a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study. We analysed 17 patients with bvFTD, 15 patients with progressive supranuclear palsy, and 20 healthy age- and gender-matched controls. In addition to neuropsychological assessment and structural MRI, participants undertook two magnetoencephalography sessions using a roving auditory oddball paradigm: once on placebo and once on 10 mg of the oral GABA reuptake inhibitor tiagabine. A subgroup underwent ultrahigh-field magnetic resonance spectroscopy measurement of GABA concentration, which was reduced among patients. We identified deficits in frontotemporal processing using conductance-based biophysical models of local and global neuronal networks. The clinical relevance of this physiological deficit is indicated by the correlation between top-down connectivity from frontal to temporal cortex and clinical measures of cognitive and behavioural change. A critical validation of the biophysical modelling approach was evidence from parametric empirical Bayes analysis that GABA levels in patients, measured by spectroscopy, were related to posterior estimates of patients' GABAergic synaptic connectivity. Further evidence for the role of GABA in frontotemporal lobar degeneration came from confirmation that the effects of tiagabine on local circuits depended not only on participant group, but also on individual baseline GABA levels. Specifically, the phasic inhibition of deep cortico-cortical pyramidal neurons following tiagabine, but not placebo, was a function of GABA concentration. The study provides proof-of-concept for the potential of dynamic causal modelling to elucidate mechanisms of human neurodegenerative disease, and explains the variation in response to candidate therapies among patients. The laminar- and neurotransmitter-specific features of the modelling framework, can be used to study other treatment approaches and disorders. In the context of frontotemporal lobar degeneration, we suggest that neurophysiological restoration in selected patients, by targeting neurotransmitter deficits, could be used to bridge between clinical and preclinical models of disease, and inform the personalized selection of drugs and stratification of patients for future clinical trials.
Assuntos
Córtex Cerebral/fisiopatologia , Demência Frontotemporal/fisiopatologia , Modelos Neurológicos , Paralisia Supranuclear Progressiva/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Idoso , Córtex Cerebral/metabolismo , Estudos Cross-Over , Método Duplo-Cego , Feminino , Demência Frontotemporal/tratamento farmacológico , Inibidores da Captação de GABA/uso terapêutico , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Magnetoencefalografia , Masculino , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Paralisia Supranuclear Progressiva/tratamento farmacológico , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tiagabina/uso terapêuticoRESUMO
Treating patients with progressive supranuclear palsy (PSP) is both effective and rewarding. This review aims to share our experience in the proactive management of PSP, considering the patient, the family and the medical context in which the illness unfolds. There are many opportunities to assist your patients, ameliorate their symptoms, reduce their risks and harm, and guide them through the complex medical, social and legal minefield that characterises life with chronic neurological illness. We summarise the challenges of early diagnosis, consider PSP mimics and the role of investigations in excluding these, and discuss the available pharmacological and non-pharmacological treatment strategies to tackle the common and challenging symptoms of PSP. The best treatment will be patient centred and as part of a multidisciplinary team.
Assuntos
Paralisia Supranuclear Progressiva , Diagnóstico Diferencial , Humanos , Paralisia Supranuclear Progressiva/diagnóstico , Paralisia Supranuclear Progressiva/terapiaRESUMO
BACKGROUND: Synaptic loss is a prominent and early feature of many neurodegenerative diseases. OBJECTIVES: We tested the hypothesis that synaptic density is reduced in the primary tauopathies of progressive supranuclear palsy (PSP) (Richardson's syndrome) and amyloid-negative corticobasal syndrome (CBS). METHODS: Forty-four participants (15 CBS, 14 PSP, and 15 age-/sex-/education-matched controls) underwent PET with the radioligand [11 C]UCB-J, which binds to synaptic vesicle glycoprotein 2A, a marker of synaptic density; participants also had 3 Tesla MRI and clinical and neuropsychological assessment. RESULTS: Nine CBS patients had negative amyloid biomarkers determined by [11 C]PiB PET and hence were deemed likely to have corticobasal degeneration (CBD). Patients with PSP-Richardson's syndrome and amyloid-negative CBS were impaired in executive, memory, and visuospatial tasks. [11 C]UCB-J binding was reduced across frontal, temporal, parietal, and occipital lobes, cingulate, hippocampus, insula, amygdala, and subcortical structures in both PSP and CBD patients compared to controls (P < 0.01), with median reductions up to 50%, consistent with postmortem data. Reductions of 20% to 30% were widespread even in areas of the brain with minimal atrophy. There was a negative correlation between global [11 C]UCB-J binding and the PSP and CBD rating scales (R = -0.61, P < 0.002; R = -0.72, P < 0.001, respectively) and a positive correlation with the revised Addenbrooke's Cognitive Examination (R = 0.52; P = 0.01). CONCLUSIONS: We confirm severe synaptic loss in PSP and CBD in proportion to disease severity, providing critical insight into the pathophysiology of primary degenerative tauopathies. [11 C]UCB-J may facilitate treatment strategies for disease-modification, synaptic maintenance, or restoration. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Alzheimer , Paralisia Supranuclear Progressiva , Tauopatias , Atrofia , Humanos , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Tauopatias/diagnóstico por imagemRESUMO
Noradrenaline is a powerful modulator of cognitive processes, including action decisions underlying saccadic control. Changes in saccadic eye movements are common across neurodegenerative diseases of ageing, including Parkinson's disease. With growing interest in noradrenergic treatment potential for non-motor symptoms in Parkinson's disease, the temporal precision of oculomotor function is advantageous to assess the effects of this modulation. Here, we studied the effect of 40â mg atomoxetine, a noradrenaline reuptake inhibitor, in 19 people with idiopathic Parkinson's disease using a single dose, randomized double-blind, crossover, placebo-controlled design. Twenty-five healthy adult participants completed the assessments to provide normative data. Participants performed prosaccade and antisaccade tasks. The latency, velocity and accuracy of saccades, and resting pupil diameter, were measured. Increased pupil diameter on the drug confirmed its expected effect on the locus coeruleus ascending arousal system. Atomoxetine altered key aspects of saccade performance: prosaccade latencies were faster and the saccadic main sequence was normalized. These changes were accompanied by increased antisaccade error rates on the drug. Together, these findings suggest a shift in the speed-accuracy trade-off for visuomotor decisions in response to noradrenergic treatment. Our results provide new evidence to substantiate a role for noradrenergic modulation of saccades, and based on known circuitry, we advance the hypothesis that this reflects modulation at the level of the locus coeruleus-superior colliculus pathway. Given the potential for noradrenergic treatment of non-motor symptoms of Parkinson's disease and related conditions, the oculomotor system can support the assessment of cognitive effects without limb-motor confounds on task performance.
RESUMO
Self-report scales are widely used in cognitive neuroscience and psychology. However, they rest on the central assumption that respondents engage meaningfully. We hypothesise that this assumption does not hold for many patients, especially those with syndromes associated with frontotemporal lobar degeneration. In this study we investigated differences in response patterns on a visual analogue scale between people with frontotemporal degeneration and controls. We found that people with syndromes associated with frontotemporal lobar degeneration respond with more invariance and less internal consistency than controls, with Bayes Factors = 15.2 and 14.5 respectively indicating strong evidence for a group difference. There was also evidence that patient responses feature lower entropy. These results have important implications for the interpretation of self-report data in clinical populations. Meta-response markers related to response patterns, rather than the values reported on individual items, may be an informative addition to future research and clinical practise.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Escala Visual Analógica , Teorema de Bayes , SíndromeRESUMO
There is extensive synaptic loss from frontotemporal lobar degeneration, in preclinical models and human in vivo and post mortem studies. Understanding the consequences of synaptic loss for network function is important to support translational models and guide future therapeutic strategies. To examine this relationship, we recruited 55 participants with syndromes associated with frontotemporal lobar degeneration and 24 healthy controls. We measured synaptic density with positron emission tomography using the radioligand [11C]UCB-J, which binds to the presynaptic vesicle glycoprotein SV2A, neurite dispersion with diffusion magnetic resonance imaging, and network function with task-free magnetic resonance imaging functional connectivity. Synaptic density and neurite dispersion in patients was associated with reduced connectivity beyond atrophy. Functional connectivity moderated the relationship between synaptic density and clinical severity. Our findings confirm the importance of synaptic loss in frontotemporal lobar degeneration syndromes, and the resulting effect on behaviour as a function of abnormal connectivity.
Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/patologia , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Síndrome , Tomografia por Emissão de Pósitrons , Encéfalo/patologiaRESUMO
How does the organization of neural information processing enable humans' sophisticated cognition? Here we decompose functional interactions between brain regions into synergistic and redundant components, revealing their distinct information-processing roles. Combining functional and structural neuroimaging with meta-analytic results, we demonstrate that redundant interactions are predominantly associated with structurally coupled, modular sensorimotor processing. Synergistic interactions instead support integrative processes and complex cognition across higher-order brain networks. The human brain leverages synergistic information to a greater extent than nonhuman primates, with high-synergy association cortices exhibiting the highest degree of evolutionary cortical expansion. Synaptic density mapping from positron emission tomography and convergent molecular and metabolic evidence demonstrate that synergistic interactions are supported by receptor diversity and human-accelerated genes underpinning synaptic function. This information-resolved approach provides analytic tools to disentangle information integration from coupling, enabling richer, more accurate interpretations of functional connectivity, and illuminating how the human neurocognitive architecture navigates the trade-off between robustness and integration.
Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Cognição , Humanos , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia , NeuroimagemRESUMO
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder characterized by neuroglial tau pathology. A new staging system for PSP pathology postmortem has been described and validated. We used a data-driven approach to test whether postmortem pathologic staging in PSP can be reproduced in vivo with 18F-flortaucipir PET. Methods: Forty-two patients with probable PSP and 39 controls underwent 18F-flortaucipir PET. Conditional inference tree analyses on regional binding potential values identified absent/present pathology thresholds to define in vivo staging. Following the postmortem staging approach for PSP pathology, we evaluated the combinations of absent/present pathology (or abnormal/normal PET signal) across all regions to assign each participant to in vivo stages. ANOVA was applied to analyze differences among means of disease severity between stages. In vivo staging was compared with postmortem staging in 9 patients who also had postmortem confirmation of the diagnosis and stage. Results: Stage assignment was estimable in 41 patients: 10, 26, and 5 patients were classified in stage I/II, stage III/IV, and stage V/VI, respectively, whereas 1 patient was not classifiable. Explorative substaging identified 2 patients in stage I, 8 in stage II, 9 in stage III, 17 in stage IV, and 5 in stage V. However, the nominal 18F-flortaucipir--derived stage was not associated with clinical severity and was not indicative of pathology staging postmortem. Conclusion:18F-flortaucipir PET in vivo does not correspond to neuropathologic staging in PSP. This analytic approach, seeking to mirror in vivo neuropathology staging with PET-to-autopsy correlational analyses, might enable in vivo staging with next-generation tau PET tracers; however, further evidence and comparisons with postmortem data are needed.
Assuntos
Paralisia Supranuclear Progressiva , Carbolinas , Humanos , Tomografia por Emissão de Pósitrons , Paralisia Supranuclear Progressiva/complicações , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismoRESUMO
Alzheimer's disease (AD) pathology is frequently observed as a comorbidity in people with dementia with Lewy bodies (DLB). Here, we evaluated the in vivo distribution of tau burden and its influence on the clinical phenotype of DLB. Tau deposition was quantified using [18F]-AV1451 positron emission tomography in people with DLB (n = 10), AD (n = 27), and healthy controls (n = 14). A subset of patients with Lewy body diseases (n = 4) also underwent [11C]-PK11195 positron emission tomography to estimate microglial activation. [18F]-AV1451 BPND was lower in DLB than AD across widespread regions. The medial temporal lobe [18F]-AV1451 BPND distinguished people with DLB from AD (AUC = 0.87), and negatively correlated with Addenbrooke's Cognitive Examination-Revised and Mini-Mental State Examination. There was a high degree of colocalization between [18F]-AV1451 and [11C]-PK11195 binding (p < 0.001). Our findings of minimal tau burden in DLB confirm previous studies. Nevertheless, the associations of [18F]-AV1451 binding with cognitive impairment suggest that tau may interact synergistically with other pathologic processes to aggravate disease severity in DLB.