Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Hepatol ; 66(3): 589-600, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27984176

RESUMO

BACKGROUND & AIMS: Mitochondrial dysfunction, oxidative stress, inflammation, and metabolic reprograming are crucial contributors to hepatic injury and subsequent liver fibrosis. Poly(ADP-ribose) polymerases (PARP) and their interactions with sirtuins play an important role in regulating intermediary metabolism in this process. However, there is little research into whether PARP inhibition affects alcoholic and non-alcoholic steatohepatitis (ASH/NASH). METHODS: We investigated the effects of genetic deletion of PARP1 and pharmacological inhibition of PARP in models of early alcoholic steatohepatitis, as well as on Kupffer cell activation in vitro using biochemical assays, real-time PCR, and histological analyses. The effects of PARP inhibition were also evaluated in high fat or methionine and choline deficient diet-induced steatohepatitis models in mice. RESULTS: PARP activity was increased in livers due to excessive alcohol intake, which was associated with decreased NAD+ content and SIRT1 activity. Pharmacological inhibition of PARP restored the hepatic NAD+ content, attenuated the decrease in SIRT1 activation and beneficially affected the metabolic-, inflammatory-, and oxidative stress-related alterations due to alcohol feeding in the liver. PARP1-/- animals were protected against alcoholic steatohepatitis and pharmacological inhibition of PARP or genetic deletion of PARP1 also attenuated Kupffer cell activation in vitro. Furthermore, PARP inhibition decreased hepatic triglyceride accumulation, metabolic dysregulation, or inflammation and/or fibrosis in models of NASH. CONCLUSION: Our results suggests that PARP inhibition is a promising therapeutic strategy in steatohepatitis with high translational potential, considering the availability of PARP inhibitors for clinical treatment of cancer. LAY SUMMARY: Poly(ADP-ribose) polymerases (PARP) are the most abundant nuclear enzymes. The PARP inhibitor olaparib (Lynparza) is a recently FDA-approved therapy for cancer. This study shows that PARP is overactivated in livers of subjects with alcoholic liver disease and that pharmacological inhibition of this enzyme with 3 different PARP inhibitors, including olaparib, attenuates high fat or alcohol induced liver injury, abnormal metabolic alteration, fat accumulation, inflammation and/or fibrosis in preclinical models of liver disease. These results suggest that PARP inhibition is a promising therapeutic strategy in the treatment of alcoholic and non-alcoholic liver diseases.


Assuntos
Fígado Gorduroso Alcoólico/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/metabolismo , Humanos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NAD/metabolismo , Estresse Nitrosativo/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenantrenos/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/deficiência , Poli(ADP-Ribose) Polimerase-1/genética , Quinolinas/farmacologia , Sirtuína 1/metabolismo
2.
Mol Med ; 21: 38-45, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25569804

RESUMO

Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Canabidiol/farmacologia , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiotônicos/farmacologia , Doxorrubicina/efeitos adversos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Animais , Canabidiol/administração & dosagem , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cardiotônicos/administração & dosagem , Cardiotoxicidade , Morte Celular , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Hemodinâmica , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos
3.
Hepatology ; 59(5): 1998-2009, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24089324

RESUMO

UNLABELLED: Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.


Assuntos
Hepatite/etiologia , Cirrose Hepática Experimental/etiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Tetracloreto de Carbono/toxicidade , Células Estreladas do Fígado/fisiologia , Hepatite/tratamento farmacológico , Humanos , Cirrose Hepática Experimental/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases
4.
Gastroenterology ; 144(4): 808-817.e15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23295443

RESUMO

BACKGROUND & AIMS: The endocannabinoid and eicosanoid lipid signaling pathways have important roles in inflammatory syndromes. Monoacylglycerol lipase (MAGL) links these pathways, hydrolyzing the endocannabinoid 2-arachidonoylglycerol to generate the arachidonic acid precursor pool for prostaglandin production. We investigated whether blocking MAGL protects against inflammation and damage from hepatic ischemia/reperfusion (I/R) and other insults. METHODS: We analyzed the effects of hepatic I/R in mice given the selective MAGL inhibitor JZL184, in Mgll(-/-) mice, fatty acid amide hydrolase(-/-) mice, and in cannabinoid receptor type 1(-/-) (CB1-/-) and cannabinoid receptor type 2(-/-) (CB2-/-). Liver tissues were collected and analyzed, along with cultured hepatocytes and Kupffer cells. We measured endocannabinoids, eicosanoids, and markers of inflammation, oxidative stress, and cell death using molecular biology, biochemistry, and mass spectrometry analyses. RESULTS: Wild-type mice given JZL184 and Mgll(-/-) mice were protected from hepatic I/R injury by a mechanism that involved increased endocannabinoid signaling via CB2 and reduced production of eicosanoids in the liver. JZL184 suppressed the inflammation and oxidative stress that mediate hepatic I/R injury. Hepatocytes were the major source of hepatic MAGL activity and endocannabinoid and eicosanoid production. JZL184 also protected from induction of liver injury by D-(+)-galactosamine and lipopolysaccharides or CCl4. CONCLUSIONS: MAGL modulates hepatic injury via endocannabinoid and eicosanoid signaling; blockade of this pathway protects mice from liver injury. MAGL inhibitors might be developed to treat conditions that expose the liver to oxidative stress and inflammatory damage.


Assuntos
Benzodioxóis/farmacologia , Eicosanoides/metabolismo , Endocanabinoides/metabolismo , Hepatopatias/fisiopatologia , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Imuno-Histoquímica , Mediadores da Inflamação/metabolismo , Hepatopatias/metabolismo , Hepatopatias/patologia , Camundongos , Camundongos Endogâmicos C57BL , Monoacilglicerol Lipases/metabolismo , Estresse Oxidativo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Valores de Referência , Transdução de Sinais/efeitos dos fármacos
5.
Blood Lymphat Cancer ; 13: 67-76, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034984

RESUMO

Purpose: The pharmacology, pharmacokinetics, pharmacodynamics, clinical efficacy, and safety of zanbrutinib are described. Summary: Mantle cell lymphoma (MCL) is a mature B-cell lymphoma that is typically associated with unfavorable outcomes, and virtually all patients with MCL have refractory or relapsed disease despite aggressive treatment. The treatment paradigm for MCL has transformed dramatically over the past decade owing to rapid advancements in immunotherapy and molecular-targeted therapies. Zanubrutinib, a second-generation Bruton's tyrosine kinase inhibitor (BTKI) designated for mature B-cell non-Hodgkin's lymphoma (NHL), has drastically improved the survival outcomes in relapsed/refractory (R/R) MCL patients. This selective BTKI is a small molecule that functions by forming a covalent bond in the active site of BTK. The inhibition of BTK activity is essential for the signaling of B-cell antigen receptor (BCR) and cytokine receptor pathways. In a preclinical study, zanubrutinib inhibited malignant B-cell proliferation and reduced tumor growth. Zanubrutinib was granted FDA-accelerated approval based on the results of Phase I and II trials. The investigator-assessed overall response rate was 83.7%, of which 78% of patients achieved complete response. The median duration of response was 19.5 months, and the median progression-free survival was 22.1 months. The most common (≥20%) all-grade adverse events were low neutrophil count (46.5%), upper respiratory tract infection (38.4%), rash (36.0%), low white blood cell count (33.7%), and low platelet count (32.6%). Conclusion: Zanubrutinib is a selective, next-generation, orally active, irreversible BTK inhibitor. The selectivity of zanubrutinib and its superior efficacy, with a well-tolerated safety profile, have proven to be attractive options for other malignancies.

6.
Fed Pract ; 38(2): 62-67, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33716481

RESUMO

BACKGROUND: Suicide is a global phenomenon and is the 10th leading cause of death in the US. Veterans are more likely to die by suicide than those in the general population. In 2018, the suicide rate for all US veterans was 1.5 times higher than the rate for nonveterans, after adjusting for population differences in age and sex. In light of this disparity, suicide prevention is one of the highest priorities for the US Department of Veterans Affairs (VA). One major goal of the VA suicide prevention strategy is to reduce access to lethal means. OBSERVATIONS: This article will provide information on medications with high lethality and a stepwise approach for how health care providers may limit lethal medications for patients at high risk for suicide. The first step is to determine suicide risk. More than 90% of those who die by suicide have a psychiatric diagnosis at the time of death. Clinicians can use risk assessment tools, such as the Veterans Health Administration Suicide Prevention Population Risk Identification and Tracking for Exigencies tool. The second step is to identify substances strongly associated with fatalities. According to the American Association of Poison Control Centers, the pharmaceutical classes associated with the largest number of fatalities are stimulants and street drugs, followed by analgesics, cardiovascular agents, antidepressants, antipsychotics, and sedatives/hypnotics. The third step is to consider potential drug-drug interactions, such as the combination of opioids and sedative-hypnotics. Finally, clinicians need to address risks. With high-risk patients it may be preferential to prescribe medications that are less lethal. All patients with a high risk of suicide should receive lethal means counseling. CONCLUSIONS: While firearms continue to be the most lethal means for veteran suicide, intentional poisoning with medications or substances also is a common method for suicide, especially for female veterans. Having knowledge of medications with high lethality and limiting access to these agents can be a successful strategy for reducing suicide deaths.

7.
Free Radic Biol Med ; 52(2): 497-506, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22120494

RESUMO

Cisplatin is a widely used antineoplastic agent; however, its major limitation is the development of dose-dependent nephrotoxicity whose precise mechanisms are poorly understood. Here we show not only that mitochondrial dysfunction is a feature of cisplatin nephrotoxicity, but also that targeted delivery of superoxide dismutase mimetics to mitochondria largely prevents the renal effects of cisplatin. Cisplatin induced renal oxidative stress, deterioration of mitochondrial structure and function, an intense inflammatory response, histopathological injury, and renal dysfunction. A single systemic dose of mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently prevented cisplatin-induced renal dysfunction. Mito-CP also prevented mitochondrial injury and dysfunction, renal inflammation, and tubular injury and apoptosis. Despite being broadly renoprotective against cisplatin, Mito-CP did not diminish cisplatin's antineoplastic effect in a human bladder cancer cell line. Our results highlight the central role of mitochondrially generated oxidants in the pathogenesis of cisplatin nephrotoxicity. Because similar compounds seem to be safe in humans, mitochondrially targeted antioxidants may represent a novel therapeutic approach against cisplatin nephrotoxicity.


Assuntos
Injúria Renal Aguda/prevenção & controle , Antineoplásicos/efeitos adversos , Antioxidantes/farmacologia , Cisplatino/efeitos adversos , Óxidos N-Cíclicos/farmacologia , Compostos Organofosforados/farmacologia , Ubiquinona/análogos & derivados , Injúria Renal Aguda/induzido quimicamente , Animais , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Óxidos N-Cíclicos/farmacocinética , Óxidos N-Cíclicos/uso terapêutico , Citoproteção , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/enzimologia , Túbulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , NADH Desidrogenase/metabolismo , Compostos Organofosforados/farmacocinética , Compostos Organofosforados/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
8.
Free Radic Biol Med ; 53(5): 1123-38, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22683818

RESUMO

Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2 h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6 h of reperfusion and peaking at 24 h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.


Assuntos
Antioxidantes/uso terapêutico , Inflamação/metabolismo , Hepatopatias/tratamento farmacológico , Mitocôndrias Hepáticas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Óxidos N-Cíclicos/farmacologia , Óxidos N-Cíclicos/uso terapêutico , Relação Dose-Resposta a Droga , Inflamação/tratamento farmacológico , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos Organofosforados/farmacologia , Compostos Organofosforados/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Ubiquinona/análogos & derivados , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
9.
Diabetes ; 61(3): 716-27, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22315315

RESUMO

Endocannabinoids and cannabinoid 1 (CB(1)) receptors have been implicated in cardiac dysfunction, inflammation, and cell death associated with various forms of shock, heart failure, and atherosclerosis, in addition to their recognized role in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes. In this study, we explored the role of CB(1) receptors in myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type 1 diabetic cardiomyopathy. Diabetic cardiomyopathy was characterized by increased myocardial endocannabinoid anandamide levels, oxidative/nitrative stress, activation of p38/Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs), enhanced inflammation (tumor necrosis factor-α, interleukin-1ß, cyclooxygenase 2, intracellular adhesion molecule 1, and vascular cell adhesion molecule 1), increased expression of CB(1), advanced glycation end product (AGE) and angiotensin II type 1 receptors (receptor for advanced glycation end product [RAGE], angiotensin II receptor type 1 [AT(1)R]), p47(phox) NADPH oxidase subunit, ß-myosin heavy chain isozyme switch, accumulation of AGE, fibrosis, and decreased expression of sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA2a). Pharmacological inhibition or genetic deletion of CB(1) receptors attenuated the diabetes-induced cardiac dysfunction and the above-mentioned pathological alterations. Activation of CB(1) receptors by endocannabinoids may play an important role in the pathogenesis of diabetic cardiomyopathy by facilitating MAPK activation, AT(1)R expression/signaling, AGE accumulation, oxidative/nitrative stress, inflammation, and fibrosis. Conversely, CB(1) receptor inhibition may be beneficial in the treatment of diabetic cardiovascular complications.


Assuntos
Cardiomiopatias Diabéticas/etiologia , Coração/fisiopatologia , Inflamação/etiologia , Miocárdio/patologia , Estresse Oxidativo , Receptor CB1 de Canabinoide/fisiologia , Animais , Apoptose , Ácidos Araquidônicos/análise , Cardiomiopatias Diabéticas/fisiopatologia , Endocanabinoides , Fibrose , Produtos Finais de Glicação Avançada/análise , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Alcamidas Poli-Insaturadas/análise , Receptor Tipo 1 de Angiotensina/análise , Receptor CB1 de Canabinoide/antagonistas & inibidores , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA