Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Genet Med ; 26(4): 101057, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38158856

RESUMO

PURPOSE: We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS: We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS: Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION: Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.


Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Animais , Humanos , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Deficiência Intelectual/genética , Anormalidades Musculoesqueléticas/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Síndrome , Peixe-Zebra/genética
2.
Genetics ; 206(1): 467-480, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28258182

RESUMO

DNA double-strand breaks (DSBs) pose a serious threat to genomic integrity. If unrepaired, they can lead to chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations and chromosome rearrangements. DSBs are repaired using end-joining or homology-directed repair strategies, with the predominant form of homology-directed repair being synthesis-dependent strand annealing (SDSA). SDSA is the first defense against genomic rearrangements and information loss during DSB repair, making it a vital component of cell health and an attractive target for chemotherapeutic development. SDSA has also been proposed to be the primary mechanism for integration of large insertions during genome editing with CRISPR/Cas9. Despite the central role for SDSA in genome stability, little is known about the defining step: annealing. We hypothesized that annealing during SDSA is performed by the annealing helicase SMARCAL1, which can anneal RPA-coated single DNA strands during replication-associated DNA damage repair. We used unique genetic tools in Drosophila melanogaster to test whether the fly ortholog of SMARCAL1, Marcal1, mediates annealing during SDSA. Repair that requires annealing is significantly reduced in Marcal1 null mutants in both synthesis-dependent and synthesis-independent (single-strand annealing) assays. Elimination of the ATP-binding activity of Marcal1 also reduced annealing-dependent repair, suggesting that the annealing activity requires translocation along DNA. Unlike the null mutant, however, the ATP-binding defect mutant showed reduced end joining, shedding light on the interaction between SDSA and end-joining pathways.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Instabilidade Genômica/genética , Proteína SMARCB1/genética , Trifosfato de Adenosina/genética , Animais , Sistemas CRISPR-Cas , Dano ao DNA/genética , DNA Complementar/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/genética , Edição de Genes
3.
G3 (Bethesda) ; 3(9): 1539-43, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23833215

RESUMO

The recognition of DNA double-strand breaks (DSBs) using a phospho-specific antibody to the histone 2A variant has become the gold standard assay for DNA damage detection. Here we report on the development of the first monoclonal antibody to the phospho-specific form of Drosophila H2AV and characterize the specificity of this antibody to programmed DSBs in oocytes and rereplication sites in endocycling cells by immunofluorescence assays and to DSBs resulting from irradiation in both cell culture and whole tissue by Western blot assays. These studies show that the antibody derived in the study is highly specific for this modification that occurs at DSB sites, and therefore will be a new useful tool within the Drosophila community for the study of DNA damage response, DSB repair, meiotic recombination and chemical agents that cause DNA damage.


Assuntos
Anticorpos Monoclonais/imunologia , Drosophila melanogaster/genética , Histonas/genética , Sequência de Aminoácidos , Animais , Western Blotting , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Drosophila melanogaster/crescimento & desenvolvimento , Técnica Direta de Fluorescência para Anticorpo , Histonas/imunologia , Histonas/metabolismo , Meiose , Dados de Sequência Molecular , Oócitos/metabolismo , Fosforilação , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA