RESUMO
Microbiome community typing analyses have recently identified the Bacteroides2 (Bact2) enterotype, an intestinal microbiota configuration that is associated with systemic inflammation and has a high prevalence in loose stools in humans1,2. Bact2 is characterized by a high proportion of Bacteroides, a low proportion of Faecalibacterium and low microbial cell densities1,2, and its prevalence varies from 13% in a general population cohort to as high as 78% in patients with inflammatory bowel disease2. Reported changes in stool consistency3 and inflammation status4 during the progression towards obesity and metabolic comorbidities led us to propose that these developments might similarly correlate with an increased prevalence of the potentially dysbiotic Bact2 enterotype. Here, by exploring obesity-associated microbiota alterations in the quantitative faecal metagenomes of the cross-sectional MetaCardis Body Mass Index Spectrum cohort (n = 888), we identify statin therapy as a key covariate of microbiome diversification. By focusing on a subcohort of participants that are not medicated with statins, we find that the prevalence of Bact2 correlates with body mass index, increasing from 3.90% in lean or overweight participants to 17.73% in obese participants. Systemic inflammation levels in Bact2-enterotyped individuals are higher than predicted on the basis of their obesity status, indicative of Bact2 as a dysbiotic microbiome constellation. We also observe that obesity-associated microbiota dysbiosis is negatively associated with statin treatment, resulting in a lower Bact2 prevalence of 5.88% in statin-medicated obese participants. This finding is validated in both the accompanying MetaCardis cardiovascular disease dataset (n = 282) and the independent Flemish Gut Flora Project population cohort (n = 2,345). The potential benefits of statins in this context will require further evaluation in a prospective clinical trial to ascertain whether the effect is reproducible in a randomized population and before considering their application as microbiota-modulating therapeutics.
Assuntos
Disbiose/epidemiologia , Disbiose/prevenção & controle , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Bacteroides/isolamento & purificação , Estudos de Coortes , Estudos Transversais , Faecalibacterium/isolamento & purificação , Fezes/microbiologia , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doenças Inflamatórias Intestinais/microbiologia , Masculino , Obesidade/microbiologia , PrevalênciaRESUMO
AIMS/HYPOTHESES: Glucagon and glucagon-like peptide-1 (GLP-1) are derived from the same precursor; proglucagon, and dual agonists of their receptors are currently being explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated levels of endogenous glucagon (hyperglucagonaemia) have been linked with hyperglycaemia in individuals with type 2 diabetes but are also observed in individuals with obesity and MASLD. GLP-1 levels have been reported to be largely unaffected or even reduced in similar conditions. We investigated potential determinants of plasma proglucagon and associations of glucagon receptor signalling with metabolic diseases based on data from the UK Biobank. METHODS: We used exome sequencing data from the UK Biobank for ~410,000 white participants to identify glucagon receptor variants and grouped them based on their known or predicted signalling. Data on plasma levels of proglucagon estimated using Olink technology were available for a subset of the cohort (~40,000). We determined associations of glucagon receptor variants and proglucagon with BMI, type 2 diabetes and liver fat (quantified by liver MRI) and performed survival analyses to investigate if elevated proglucagon predicts type 2 diabetes development. RESULTS: Obesity, MASLD and type 2 diabetes were associated with elevated plasma levels of proglucagon independently of each other. Baseline proglucagon levels were associated with the risk of type 2 diabetes development over a 14 year follow-up period (HR 1.13; 95% CI 1.09, 1.17; n=1562; p=1.3×10-12). This association was of the same magnitude across strata of BMI. Carriers of glucagon receptor variants with reduced cAMP signalling had elevated levels of proglucagon (ß 0.847; 95% CI 0.04, 1.66; n=17; p=0.04), and carriers of variants with a predicted frameshift mutation had higher levels of liver fat compared with the wild-type reference group (ß 0.504; 95% CI 0.03, 0.98; n=11; p=0.04). CONCLUSIONS/INTERPRETATION: Our findings support the suggestion that glucagon receptor signalling is involved in MASLD, that plasma levels of proglucagon are linked to the risk of type 2 diabetes development, and that proglucagon levels are influenced by genetic variation in the glucagon receptor, obesity, type 2 diabetes and MASLD. Determining the molecular signalling pathways downstream of glucagon receptor activation may guide the development of biased GLP-1/glucagon co-agonist with improved metabolic benefits. DATA AVAILABILITY: All coding is available through https://github.com/nicwin98/UK-Biobank-GCG.
Assuntos
Bancos de Espécimes Biológicos , Diabetes Mellitus Tipo 2 , Obesidade , Proglucagon , Receptores de Glucagon , Transdução de Sinais , Humanos , Receptores de Glucagon/genética , Receptores de Glucagon/metabolismo , Reino Unido , Feminino , Proglucagon/metabolismo , Proglucagon/genética , Masculino , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Pessoa de Meia-Idade , Obesidade/sangue , Idoso , Adulto , Índice de Massa Corporal , Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Biobanco do Reino UnidoRESUMO
AIMS/HYPOTHESIS: Exercise has a profound effect on insulin sensitivity in skeletal muscle. The euglycaemic-hyperinsulinaemic clamp (EHC) is the gold standard for assessment of insulin sensitivity but it does not reflect the hyperglycaemia that occurs after eating a meal. In previous EHC investigations, it has been shown that the interstitial glucose concentration in muscle is decreased to a larger extent in previously exercised muscle than in rested muscle. This suggests that previously exercised muscle may increase its glucose uptake more than rested muscle if glucose supply is increased by hyperglycaemia. Therefore, we hypothesised that the exercise-induced increase in muscle insulin sensitivity would appear greater after eating a meal than previously observed with the EHC. METHODS: Ten recreationally active men performed dynamic one-legged knee extensor exercise for 1 h. Following this, both femoral veins and one femoral artery were cannulated. Subsequently, 4 h after exercise, a solid meal followed by two liquid meals were ingested over 1 h and glucose uptake in the two legs was measured for 3 h. Muscle biopsies from both legs were obtained before the meal test and 90 min after the meal test was initiated. Data obtained in previous studies using the EHC (n=106 participants from 13 EHC studies) were used for comparison with the meal-test data obtained in this study. RESULTS: Plasma glucose and insulin peaked 45 min after initiation of the meal test. Following the meal test, leg glucose uptake and glucose clearance increased twice as much in the exercised leg than in the rested leg; this difference is twice as big as that observed in previous investigations using EHCs. Glucose uptake in the rested leg plateaued after 15 min, alongside elevated muscle glucose 6-phosphate levels, suggestive of compromised muscle glucose metabolism. In contrast, glucose uptake in the exercised leg plateaued 45 min after initiation of the meal test and there were no signs of compromised glucose metabolism. Phosphorylation of the TBC1 domain family member 4 (TBC1D4; p-TBC1D4Ser704) and glycogen synthase activity were greater in the exercised leg compared with the rested leg. Muscle interstitial glucose concentration increased with ingestion of meals, although it was 16% lower in the exercised leg than in the rested leg. CONCLUSIONS/INTERPRETATION: Hyperglycaemia after meal ingestion results in larger differences in muscle glucose uptake between rested and exercised muscle than previously observed during EHCs. These findings indicate that the ability of exercise to increase insulin-stimulated muscle glucose uptake is even greater when evaluated with a meal test than has previously been shown with EHCs.
Assuntos
Glicemia , Exercício Físico , Técnica Clamp de Glucose , Resistência à Insulina , Insulina , Refeições , Músculo Esquelético , Humanos , Masculino , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Resistência à Insulina/fisiologia , Adulto , Glicemia/metabolismo , Insulina/metabolismo , Insulina/sangue , Adulto Jovem , Refeições/fisiologiaRESUMO
The underlying causes of diabetic kidney disease are still largely unknown. New insights into the contributing causes of diabetic nephropathy are important to prevent this complication. Hyperglycemia and hypertension are some of the risk factors for diabetic nephropathy. However, the incidence of diabetic nephropathy is increasing despite efforts to normalize blood glucose levels and blood pressure. Therefore, other factors should be investigated as causes of diabetic nephropathy. We investigated whether long-term increased plasma levels of glucagon contribute to the development of pathophysiological changes in kidney function as seen in patients with diabetic nephropathy. Using mouse models of chronic activation and inactivation of glucagon receptor signaling, we investigated whether glucagon is involved in changes in renal function, renal structure, and transcriptional changes. We found several histopathological changes in the kidney, such as thickening of the parietal layer of Bowman's capsule, glomerular mesangial cell expansion, and significant albuminuria in the mice with activated glucagon receptor signaling. Opposite effects on mesangial area expansion and the development of albuminuria were demonstrated in mice with glucagon receptor inactivation. RNA sequencing data revealed that transcription of genes related to fatty acid metabolism, podocytes, Na+-K+-ATPase, and sodium/glucose transport was significantly changed in mice with activated glucagon receptor signaling. These data implicate that glucagon receptor signaling is involved in the development of kidney injury, as seen in type 2 diabetes, and that glucagon receptor is a potential therapeutic target in the treatment of diabetes. NEW & NOTEWORTHY This study suggests that the glucagon receptor is a potential therapeutic target in the treatment of diabetic kidney disease. We show, in mice, that long-term treatment with a glucagon analog showed not only pathophysiological changes and changes in renal function but also transcriptional changes in the kidneys, whereas opposite effects were demonstrated in mice with glucagon receptor inactivation. Therefore, the use of glucagon in a treatment regimen requires investigation of possible metabolic and renal abnormalities.
Assuntos
Nefropatias Diabéticas , Glucagon , Rim , Receptores de Glucagon , Transdução de Sinais , Animais , Receptores de Glucagon/metabolismo , Receptores de Glucagon/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/genética , Rim/metabolismo , Rim/patologia , Glucagon/metabolismo , Glucagon/sangue , Masculino , Albuminúria/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Modelos Animais de DoençasRESUMO
Loss of insulin sensitivity, α- and ß-cell dysfunction, and impairment in incretin effect have all been implicated in the pathophysiology of type 2 diabetes (T2D). Parsimonious mathematical models are useful in quantifying parameters related to the pathophysiology of T2D. Here, we extend the minimum model developed to describe the glucose-insulin-glucagon dynamics in the isoglycemic intravenous glucose infusion (IIGI) experiment to the oral glucose tolerance test (OGTT). The extended model describes glucose and hormone dynamics in OGTT including the contribution of the incretin hormones, glucose-dependent insulinotropic polypeptide (GIP), and glucagon-like peptide-1 (GLP-1), to insulin secretion. A new function describing glucose arrival from the gut is introduced. The model is fitted to OGTT data from eight individuals with T2D and eight weight-matched controls (CS) without diabetes to obtain parameters related to insulin sensitivity, ß- and α-cell function. The parameters, i.e., measures of insulin sensitivity, a1, suppression of glucagon secretion, k1, magnitude of glucagon secretion, γ2, and incretin-dependent insulin secretion, γ3, were found to be different between CS and T2D with P values < 0.002, <0.017, <0.009, <0.004, respectively. A new rubric for estimating the incretin effect directly from modeling the OGTT is presented. The average incretin effect correlated well with the experimentally determined incretin effect with a Spearman rank test correlation coefficient of 0.67 (P < 0.012). The average incretin effect was found to be different between CS and T2D (P < 0.032). The developed model is shown to be effective in quantifying the factors relevant to T2D pathophysiology.NEW & NOTEWORTHY A new extended model of oral glucose tolerance test (OGTT) has been developed that includes glucagon dynamics and incretin contribution to insulin secretion. The model allows the estimation of parameters related to α- and ß-cell dysfunction, insulin sensitivity, and incretin action. A new function describing the influx of glucose from the gut has been introduced. A new rubric for estimating the incretin effect directly from the OGTT experiment has been developed. The effect of glucose dose was also investigated.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Incretinas , Teste de Tolerância a Glucose , Glucagon , Insulina , Glicemia , Polipeptídeo Inibidor GástricoRESUMO
Ghrelin is an appetite-stimulating hormone secreted from the gastric mucosa in the fasting state, and secretion decreases in response to food intake. After sleeve gastrectomy (SG), plasma concentrations of ghrelin decrease markedly. Whether this affects appetite and glucose tolerance postoperatively is unknown. We investigated the effects of ghrelin infusion on appetite and glucose tolerance in individuals with obesity before and 3 mo after SG. Twelve participants scheduled for SG were included. Before and 3 mo after surgery, a mixed-meal test followed by an ad libitum meal test was performed with concomitant infusions of acyl-ghrelin (1 pmol/kg/min) or placebo. Infusions began 60 min before meal intake to reach a steady state before the mixed-meal and were continued throughout the study day. Two additional experimental days with 0.25 pmol/kg/min and 10 pmol/kg/min of acyl-ghrelin infusions were conducted 3 mo after surgery. Both before and after SG, postprandial glucose concentrations increased dose dependently during ghrelin infusions compared with placebo. Ghrelin infusions inhibited basal and postprandial insulin secretion rates, resulting in lowered measures of ß-cell function, but no effect on insulin sensitivity was seen. Ad libitum meal intake was unaffected by the administration of ghrelin. In conclusion, ghrelin infusion increases postprandial plasma glucose concentrations and impairs ß-cell function before and after SG but has no effect on ad libitum meal intake. We speculate that the lower concentration of ghrelin after SG may impact glucose metabolism following this procedure.NEW & NOTEWORTHY Ghrelin's effect on glucose tolerance and food intake following sleeve gastrectomy (SG) was evaluated. Acyl-ghrelin was infused during a mixed-meal and ad libitum meals before and 3 mo after surgery. Postprandial glucose concentrations increased during ghrelin infusions, both before and after surgery, while insulin production was inhibited. However, ad libitum meal intake did not differ during ghrelin administration compared with placebo. The decreased ghrelin concentration following SG may contribute to the glycemic control after surgery.
Assuntos
Apetite , Glicemia , Ingestão de Alimentos , Gastrectomia , Grelina , Período Pós-Prandial , Humanos , Grelina/sangue , Grelina/análogos & derivados , Masculino , Adulto , Feminino , Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Período Pós-Prandial/efeitos dos fármacos , Pessoa de Meia-Idade , Insulina/sangue , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , Hormônios Gastrointestinais/metabolismo , Hormônios Gastrointestinais/sangue , Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Método Duplo-Cego , Obesidade/cirurgia , Obesidade/metabolismoRESUMO
Increased plasma concentrations of glucagon (hyperglucagonemia) are reported in patients with type 2 diabetes (T2D) and are considered a diabetogenic risk factor. Emerging evidence suggests that hepatic steatosis in obesity is causing a condition of resistance toward glucagon's effects on amino acid metabolism, resulting in an amino acid-induced hyperglucagonemia. We investigated the presence of hyperglucagonemia in individuals with biopsy-verified metabolic dysfunction-associated steatotic liver disease (MASLD), and whether body mass index (BMI), T2D, hepatic steatosis, and/or fibrosis contribute to this relationship. To dissect potential mechanisms, we also determined hepatic gene expression related to amino acid transport and catabolism. Individuals with MASLD had hyperglucagonemia {controls (n = 74) vs. MASLD (n = 106); median [Q1, Q3]; 4 [3, 7] vs. 8 [6, 13] pM), P < 0.0001} and were glucagon resistant (assessed by the glucagon-alanine index) {1.3 [0.9, 2.1] vs. 3.3 [2.1, 5.3] pM·mM, P < 0.0001}. These changes were associated with hepatic steatosis (P < 0.001, R2 > 0.25) independently of BMI, sex, age, and T2D. Plasma levels of glucagon were similar in individuals with MASLD when stratified on T2D status {MASLD-T2D (n = 52) vs. MASLD + T2D (n = 54); 8 [6, 11] vs. 8 [6, 13] pM, P = 0.34} and hepatic fibrosis {MASLD + F0 (n = 25) vs. MASLD + F1-F3 (n = 67); 8.4 [7.0, 13.3] vs. 7.9 [5.2, 11.6] pM, P = 0.43}. Obesity (BMI = 30 kg/m2) did not alter glucagon levels (P = 0.65) within groups (control/MASLD). The mRNA expression of proteins involved in amino acid transport and catabolism was downregulated in MASLD. Thus, relative hyperglucagonemia is present in individuals with biopsy-verified MASLD, and hepatic steatosis partially drives hyperglucagonemia and glucagon resistance, irrespective of T2D, BMI, and hepatic fibrosis.NEW & NOTEWORTHY Individuals with metabolic dysfunction-associated steatotic liver disease (MASLD) present with increased plasma levels of glucagon (hyperglucagonemia), irrespective of body mass index (BMI) and type 2 diabetes. Therefore, MASLD and the resultant hyperglucagonemia may act as a diabetogenic risk factor. Notably, hepatic steatosis was a significant contributor to the hyperglucagonemia in MASLD, potentially unveiling a pathway for the hyperglucagonemia in some patients with type 2 diabetes.
Assuntos
Índice de Massa Corporal , Diabetes Mellitus Tipo 2 , Fígado Gorduroso , Glucagon , Cirrose Hepática , Humanos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Glucagon/sangue , Masculino , Pessoa de Meia-Idade , Feminino , Fígado Gorduroso/sangue , Cirrose Hepática/sangue , Obesidade/complicações , Obesidade/sangue , Fígado/metabolismo , Fígado/patologia , Idoso , Adulto , Aminoácidos/sangueRESUMO
BACKGROUND: Weight regain after weight loss is a major problem in the treatment of persons with obesity. METHODS: In a randomized, head-to-head, placebo-controlled trial, we enrolled adults with obesity (body-mass index [the weight in kilograms divided by the square of the height in meters], 32 to 43) who did not have diabetes. After an 8-week low-calorie diet, participants were randomly assigned for 1 year to one of four strategies: a moderate-to-vigorous-intensity exercise program plus placebo (exercise group); treatment with liraglutide (3.0 mg per day) plus usual activity (liraglutide group); exercise program plus liraglutide therapy (combination group); or placebo plus usual activity (placebo group). End points with prespecified hypotheses were the change in body weight (primary end point) and the change in body-fat percentage (secondary end point) from randomization to the end of the treatment period in the intention-to-treat population. Prespecified metabolic health-related end points and safety were also assessed. RESULTS: After the 8-week low-calorie diet, 195 participants had a mean decrease in body weight of 13.1 kg. At 1 year, all the active-treatment strategies led to greater weight loss than placebo: difference in the exercise group, -4.1 kg (95% confidence interval [CI], -7.8 to -0.4; P = 0.03); in the liraglutide group, -6.8 kg (95% CI, -10.4 to -3.1; P<0.001); and in the combination group, -9.5 kg (95% CI, -13.1 to -5.9; P<0.001). The combination strategy led to greater weight loss than exercise (difference, -5.4 kg; 95% CI, -9.0 to -1.7; P = 0.004) but not liraglutide (-2.7 kg; 95% CI, -6.3 to 0.8; P = 0.13). The combination strategy decreased body-fat percentage by 3.9 percentage points, which was approximately twice the decrease in the exercise group (-1.7 percentage points; 95% CI, -3.2 to -0.2; P = 0.02) and the liraglutide group (-1.9 percentage points; 95% CI, -3.3 to -0.5; P = 0.009). Only the combination strategy was associated with improvements in the glycated hemoglobin level, insulin sensitivity, and cardiorespiratory fitness. Increased heart rate and cholelithiasis were observed more often in the liraglutide group than in the combination group. CONCLUSIONS: A strategy combining exercise and liraglutide therapy improved healthy weight loss maintenance more than either treatment alone. (Funded by the Novo Nordisk Foundation and others; EudraCT number, 2015-005585-32; ClinicalTrials.gov number, NCT04122716.).
Assuntos
Fármacos Antiobesidade/uso terapêutico , Terapia por Exercício , Liraglutida/uso terapêutico , Obesidade/terapia , Redução de Peso , Tecido Adiposo , Adulto , Fármacos Antiobesidade/efeitos adversos , Tamanho Corporal , Restrição Calórica , Terapia Combinada , Feminino , Humanos , Liraglutida/efeitos adversos , Masculino , Pessoa de Meia-Idade , Obesidade/dietoterapia , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacosRESUMO
BACKGROUND: Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS: Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS: We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION: We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.
Assuntos
Insulina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Fosfoproteínas , Proteômica , Transdução de Sinais , Animais , Miócitos Cardíacos/metabolismo , Masculino , Insulina/metabolismo , Fosforilação , Fosfoproteínas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Receptor de Insulina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , CamundongosRESUMO
BACKGROUND: Metabolic effects of empagliflozin treatment include lowered glucose and insulin concentrations, elevated free fatty acids and ketone bodies and have been suggested to contribute to the cardiovascular benefits of empagliflozin treatment, possibly through an improved cardiac function. We aimed to evaluate the influence of these metabolic changes on cardiac function in patients with T2D. METHODS: In a randomized cross-over design, the SGLT2 inhibitor empagliflozin (E) was compared with insulin (I) treatment titrated to the same level of glycemic control in 17 patients with type 2 diabetes, BMI of > 28 kg/m2, C-peptide > 500 pM. Treatments lasted 5 weeks and were preceded by 3-week washouts (WO). At the end of treatments and washouts, cardiac diastolic function was determined with magnetic resonance imaging from left ventricle early peak-filling rate and left atrial passive emptying fraction (primary and key secondary endpoints); systolic function from left ventricle ejection fraction (secondary endpoint). Coupling between cardiac function and fatty acid concentrations, was studied on a separate day with a second scan after reduction of plasma fatty acids with acipimox. Data are Mean ± standard error. Between treatment difference (ΔT: E-I) and treatments effects (ΔE: E-WO or ΔI: I -WO) were evaluated using Students' t-test or Wilcoxon signed rank test as appropriate. RESULTS: Glucose concentrations were similar, fatty acids, ketone bodies and lipid oxidation increased while insulin concentrations decreased on empagliflozin compared with insulin treatment. Cardiac diastolic and systolic function were unchanged by either treatment. Acipimox decreased fatty acids with 35% at all visits, and this led to reduced cardiac diastolic (ΔT: -51 ± 22 ml/s (p < 0.05); ΔE: -33 ± 26 ml/s (ns); ΔI: 37 ± 26 (ns, p < 0.05 vs ΔE)) and systolic function (ΔT: -3 ± 1% (p < 0.05); ΔE: -3 ± 1% (p < 0.05): ΔI: 1 ± 2 (ns, ns vs ΔE)) under chronotropic stress during empagliflozin compared to insulin treatment. CONCLUSIONS: Despite significant metabolic differences, cardiac function did not differ on empagliflozin compared with insulin treatment. Impaired cardiac function during acipimox treatment, could suggest greater cardiac reliance on lipid metabolism for proper function during empagliflozin treatment in patients with type 2 diabetes. TRIAL REGISTRATION: EudraCT 2017-002101-35, August 2017.
Assuntos
Apêndice Atrial , Diabetes Mellitus Tipo 2 , Humanos , Insulina , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Estudos Cross-Over , Glucose , Ácidos Graxos , Corpos CetônicosRESUMO
INTRODUCTION: Post-bariatric hypoglycaemia (PBH) is a rare yet disabling clinical condition, mostly reported after Roux-en-Y gastric bypass (RYGB) surgery. RYGB is one of the most widely used and effective bariatric procedures. The pathophysiology of PBH remains unclear, and treatment options are limited in effectiveness and/or carry significant side effects. Acarbose slows carbohydrates digestion and absorption and is generally considered first-line pharmacological treatment for PBH but its gastrointestinal side effects limit patient compliance. Canagliflozin inhibits intestinal and renal sodium-dependent glucose absorption and reduces postprandial excursions of glucose, insulin and incretins after RYGB - effects that could be beneficial in ameliorating PBH. AIMS: The trial aims to investigate how blood glucose levels are affected during daily living in subjects with PBH during treatment with canagliflozin or acarbose compared with placebo, and to study the meal-induced entero-endocrine mechanisms implied in the treatment responses. METHODS: In a double-blinded, randomized, crossover clinical trial, HypoBar I will investigate the effectiveness in reducing the risk of PBH, safety, ambulatory glucose profile and entero-endocrine responses when PBH is treated with canagliflozin 300 mg twice daily during a 4-week intervention period, compared with acarbose 50 mg thrice daily or placebo. ETHICS AND DISSEMINATION: HypoBar I is approved by the Local regulatory entities. Results will be published in peer-reviewed journals. CONCLUSION: If effective, well-tolerated and safe, canagliflozin could be a novel treatment for people with PBH. HypoBar I might also unravel new mechanisms underlying PBH, potentially identifying new treatment targets. TRIAL REGISTRATION: EudraCT number 2022-000157-87.
Assuntos
Acarbose , Canagliflozina , Hipoglicemia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Acarbose/uso terapêutico , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Canagliflozina/uso terapêutico , Estudos Cross-Over , Método Duplo-Cego , Derivação Gástrica/efeitos adversos , Hipoglicemia/prevenção & controle , Hipoglicemia/induzido quimicamente , Hipoglicemiantes/uso terapêutico , Complicações Pós-Operatórias/tratamento farmacológico , Complicações Pós-Operatórias/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêuticoRESUMO
Type 2 diabetes mellitus (T2DM) is associated with obesity and, therefore, it is important to target both overweight and hyperglycaemia. Glucagon plays important roles in glucose, amino acid and fat metabolism and may also regulate appetite and energy expenditure. These physiological properties are currently being exploited therapeutically in several compounds, most often in combination with glucagon-like peptide-1 (GLP-1) agonism in the form of dual agonists. With this combination, increases in hepatic glucose production and hyperglycaemia, which would be counterproductive, are largely avoided. In multiple randomized trials, the co-agonists have been demonstrated to lead to significant weight loss and, in participants with T2DM, even improved glycated haemoglobin (HbA1c) levels. In addition, significant reductions in hepatic fat content have been observed. Here, we review and discuss the studies so far available. Twenty-six randomized trials of seven different GLP-1 receptor (GLP-1R)/glucagon receptor (GCGR) co-agonists were identified and reviewed. GLP-1R/GCGR co-agonists generally provided significant weight loss, reductions in hepatic fat content, improved lipid profiles, insulin secretion and sensitivity, and in some cases, improved HbA1c levels. A higher incidence of adverse effects was present with GLP-1R/GCGR co-agonist treatment than with GLP-1 agonist monotherapy or placebo. Possible additional risks associated with glucagon agonism are also discussed. A delicate balance between GLP-1 and glucagon agonism seems to be of particular importance. Further studies exploring the optimal ratio of GLP-1 and glucagon receptor activation and dosage and titration regimens are needed to ensure a sufficient safety profile while providing clinical benefits.
Assuntos
Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1 , Glucagon , Hipoglicemiantes , Obesidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Glucagon/metabolismo , Glucagon/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Receptores de Glucagon/agonistas , Redução de Peso/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/agonistas , Hemoglobinas Glicadas/efeitos dos fármacos , Hemoglobinas Glicadas/metabolismo , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , MasculinoRESUMO
AIM: To test the effect of the glucagon-like peptide-1 receptor agonist, liraglutide, on residual beta-cell function in adults with newly diagnosed type 1 diabetes. MATERIALS AND METHODS: In a multicentre, double-blind, parallel-group trial, adults with newly diagnosed type 1 diabetes and stimulated C-peptide of more than 0.2 nmol/L were randomized (1:1) to 1.8-mg liraglutide (Victoza) or placebo once daily for 52 weeks with 6 weeks of follow-up with only insulin treatment. The primary endpoint was the between-group difference in C-peptide area under the curve (AUC) following a liquid mixed-meal test after 52 weeks of treatment. RESULTS: Sixty-eight individuals were randomized. After 52 weeks, the 4-hour AUC C-peptide response was maintained with liraglutide, but decreased with placebo (P = .002). Six weeks after end-of-treatment, C-peptide AUCs were similar for liraglutide and placebo. The average required total daily insulin dose decreased from 0.30 to 0.23 units/kg/day with liraglutide, but increased from 0.29 to 0.43 units/kg/day in the placebo group at week 52 (P < .001). Time without the need for insulin treatment was observed in 13 versus two patients and lasted for 22 weeks (from 3 to 52 weeks) versus 6 weeks (from 4 to 8 weeks) on average for liraglutide and placebo, respectively. Patients treated with liraglutide had fewer episodes of hypoglycaemia compared with placebo-treated patients. The adverse events with liraglutide were predominantly gastrointestinal and transient. CONCLUSIONS: Treatment with liraglutide improves residual beta-cell function and reduces the dose of insulin during the first year after diagnosis. Beta-cell function was similar at 6 weeks postliraglutide treatment.
Assuntos
Peptídeo C , Diabetes Mellitus Tipo 1 , Hipoglicemiantes , Secreção de Insulina , Insulina , Liraglutida , Humanos , Liraglutida/uso terapêutico , Liraglutida/farmacologia , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/sangue , Masculino , Feminino , Método Duplo-Cego , Adulto , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Peptídeo C/sangue , Secreção de Insulina/efeitos dos fármacos , Pessoa de Meia-Idade , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Indução de Remissão , Resultado do Tratamento , Hemoglobinas Glicadas/metabolismo , Hemoglobinas Glicadas/efeitos dos fármacos , Hemoglobinas Glicadas/análise , Área Sob a CurvaRESUMO
AIM: Bile acid sequestrants are cholesterol-lowering drugs, which also improve glycaemic control in people with type 2 diabetes. The mechanism behind the glucose-lowering effect is unknown but has been proposed to be mediated by increased glucagon-like peptide-1 (GLP-1) secretion. Here, we investigated the glucose-lowering effects of sevelamer including any contribution from GLP-1 in people with type 2 diabetes. MATERIALS AND METHODS: In a randomized, double-blind, placebo-controlled, crossover study, 15 people with type 2 diabetes on metformin monotherapy underwent two 17-day treatment periods with the bile acid sequestrant sevelamer and placebo, respectively, in a randomized order and with an interposed wash-out period of minimum 6 weeks. On days 15 and 17 of each treatment period, participants underwent experimental days with 4-h liquid meal tests and application of concomitant infusion of exendin(9-39)NH2 or saline. RESULTS: Compared with placebo, sevelamer improved insulin sensitivity (assessed by homeostatic model assessment of insulin resistance) and beta-cell sensitivity to glucose and lowered fasting and postprandial plasma glucose concentrations. In both treatment periods, exendin(9-39)NH2 increased postprandial glucose excursions compared with saline but without absolute or relative difference between the two treatment periods. In contrast, exendin(9-39)NH2 abolished the sevelamer-induced improvement in beta-cell glucose sensitivity. CONCLUSIONS: The bile acid sequestrant sevelamer improved insulin sensitivity and beta-cell sensitivity to glucose, but using the GLP-1 receptor antagonist exendin(9-39)NH2 we were not able to detect a GLP-1-mediated glucose-lowering effect of sevelamer in individuals with type 2 diabetes. Nevertheless, the sevelamer-induced improvement of beta-cell sensitivity to glucose was shown to be GLP-1-dependent.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sevelamer/farmacologia , Sevelamer/uso terapêutico , Estudos Cross-Over , Glicemia , Peptídeo 1 Semelhante ao Glucagon , Glucose/uso terapêutico , Aminas/uso terapêutico , Ácidos e Sais Biliares , Insulina/uso terapêuticoRESUMO
AIM: We investigated the effect of 52-week treatment with liraglutide, a glucagon-like peptide 1 receptor agonist, on glucose tolerance and incretin effect in women with previous gestational diabetes mellitus (pGDM). MATERIALS AND METHODS: Women with overweight/obesity and pGDM were randomized to once daily subcutaneous liraglutide 1.8 mg or placebo for 52 weeks. Participants underwent oral glucose tolerance test (OGTT) and isoglycaemic intravenous glucose infusion at baseline and at 52 weeks, and an additional OGTT after the drug wash-out. RESULTS: In total, 104 women [age: mean ± SD, 38 ± 5 years; fasting plasma glucose (FPG): 5.5 ± 0.4 mmol/L; glycated haemoglobin (HbA1c): 33 ± 4 mmol/mol, bodyweight: 88.2 ± 14.8 kg, body mass index: 31.1 ± 4.3 kg/m2 ] were assigned to liraglutide (n = 49) or placebo (n = 55). Estimated treatment difference (ETD) for area under curve during OGTT was -173 (95% confidence interval -250 to -97) mmol/L × min, p < .0001, but after wash-out the difference disappeared [ETD 58 (-30 to 146) mmol/L × min, p = .536]. Liraglutide reduced FPG [ETD -0.2 (-0.4 to -0.1) mmol/L, p = .018], HbA1c [-2.2 (-3.5 to -0.8) mmol/mol, p = .018] and bodyweight [-3.9 (-6.2 to -1.6) kg, p = .012]. No change in the incretin effect was observed. The number of women with prediabetes was reduced from 64% to 10% with liraglutide vs. 50% with placebo [adjusted odds ratio 0.10 (0.03-0.32), p = .002]. CONCLUSIONS: Treatment with liraglutide for 52 weeks improved glucose tolerance, FPG, HbA1c and bodyweight in women with overweight/obesity and pGDM. Progression to prediabetes while on drug was markedly reduced, but after a 1-week drug wash-out, the effect was lost.
Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Estado Pré-Diabético , Gravidez , Humanos , Feminino , Adulto , Liraglutida/uso terapêutico , Hipoglicemiantes/uso terapêutico , Incretinas/uso terapêutico , Diabetes Gestacional/tratamento farmacológico , Diabetes Gestacional/prevenção & controle , Hemoglobinas Glicadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sobrepeso/complicações , Sobrepeso/tratamento farmacológico , Estado Pré-Diabético/tratamento farmacológico , Glucose/uso terapêutico , Obesidade/complicações , Obesidade/tratamento farmacológico , Glicemia , Método Duplo-Cego , Resultado do TratamentoRESUMO
AIM: Experimental hypoglycaemia blunts the counterregulatory hormone and symptom responses to a subsequent episode of hypoglycaemia. In this study, we aimed to assess the associations between antecedent exposure and continuous glucose monitoring (CGM)-recorded hypoglycaemia during a 1-week period and the counterregulatory responses to subsequent experimental hypoglycaemia in people with type 1 diabetes. MATERIALS AND METHODS: Forty-two people with type 1 diabetes (20 females, mean ± SD glycated haemoglobin 7.8% ± 1.0%, diabetes duration median (interquartile range) 22.0 (10.5-34.9) years, 29 CGM users, and 19 with impaired awareness of hypoglycaemia) wore an open intermittently scanned CGM for 1 week to detect hypoglycaemic exposure before a standardized hyperinsulinaemic-hypoglycaemic [2.8 ± 0.1 mmol/L (50.2 ± 2.3 mg/dl)] glucose clamp. Symptom responses and counterregulatory hormones were measured during the clamp. The study is part of the HypoRESOLVE project. RESULTS: CGM-recorded hypoglycaemia in the week before the clamp was negatively associated with adrenaline response [ß -0.09, 95% CI (-0.16, -0.02) nmol/L, p = .014], after adjusting for CGM use, awareness of hypoglycaemia, glycated haemoglobin and total daily insulin dose. This was driven by level 2 hypoglycaemia [<3.0 mmol/L (54 mg/dl)] [ß -0.21, 95% CI (-0.41, -0.01) nmol/L, p = .034]. CGM-recorded hypoglycaemia was negatively associated with total, autonomic, and neuroglycopenic symptom responses, but these associations were lost after adjusting for potential confounders. CONCLUSIONS: Recent exposure to CGM-detected hypoglycaemia was independently associated with an attenuated adrenaline response to experimental hypoglycaemia in people with type 1 diabetes.
Assuntos
Automonitorização da Glicemia , Glicemia , Diabetes Mellitus Tipo 1 , Técnica Clamp de Glucose , Hipoglicemia , Hipoglicemiantes , Humanos , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/fisiopatologia , Feminino , Hipoglicemia/induzido quimicamente , Hipoglicemia/sangue , Hipoglicemia/etiologia , Masculino , Adulto , Glicemia/análise , Glicemia/metabolismo , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Epinefrina/sangue , Insulina/administração & dosagem , Insulina/efeitos adversos , Pessoa de Meia-Idade , Hemoglobinas Glicadas/análise , Hemoglobinas Glicadas/metabolismo , Controle Glicêmico , Monitoramento Contínuo da GlicoseRESUMO
BACKGROUND: Early-onset osteoporosis is a frequent late effect after pediatric hematopoietic stem cell transplantation (HSCT). It remains unknown if physical training can improve bone formation in these patients, as the transplantation procedure may cause sustained dysregulation of the bone-forming osteoblast progenitor cells. OBJECTIVE: We aimed to explore the effect of resistance training on bone remodeling in long-term survivors of pediatric HSCT. PROCEDURE: In this prospective, controlled intervention study, we included seven HSCT survivors and 15 age- and sex-matched healthy controls. The participants completed a 12-week heavy load, lower extremity resistance training intervention with three weekly sessions. We measured fasting serum levels of the bone formation marker "N-terminal propeptide of type I procollagen" (P1NP), and the bone resorption marker "C-terminal telopeptide of type I collagen" (CTX). The hypothesis was planned before data collection began. The trial was registered at Clinicaltrials.gov before including the first participant, with trial registration no. NCT04922970. RESULTS: Resistance training led to significantly increased levels of fasting P1NP in both patients (from 57.62 to 114.99 ng/mL, p = .03) and controls (from 66.02 to 104.62 ng/mL, p < .001). No significant changes in fasting CTX levels were observed. CONCLUSIONS: Despite previous high-dose cytotoxic therapy, long-term survivors of pediatric HSCT respond to resistance training with improvement of bone formation, comparable to that of healthy controls. This suggests that resistance training might be a promising non-pharmacological approach to prevent the early decline in bone mass, and should be considered as part of a follow-up program to counteract long-term sequela after pediatric HSCT.
Assuntos
Remodelação Óssea , Transplante de Células-Tronco Hematopoéticas , Treinamento Resistido , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Feminino , Criança , Adolescente , Estudos Prospectivos , Sobreviventes , Estudos de Casos e Controles , Seguimentos , Pró-Colágeno/sangue , Fragmentos de Peptídeos/sangue , Osteoporose/etiologia , Colágeno Tipo I/sangue , Biomarcadores/sangueRESUMO
Global health accelerators have become the leading expression of global health engagement and policy. While accelerators seem to be the strategy of the moment, the term is meaningless and devoid of any statement of content. Moreover, acceleration can make social processes too fast to be subject to rational control or governance, especially in an era of (un-)social media, which makes the pace of communication and information. Under the dominance of neoliberalism, acceleration and accelerators pose a particular risk because they encounter a situation in which mankind is moving away from solving vital challenges and addressing their root causes. The fashionable emergence of accelerators cannot inspire confidence in the future trends in global health unless they actually result in tangible change and new approaches to tackling systemic challenges.
Assuntos
Saúde Global , Humanos , Política de Saúde , PolíticaRESUMO
SIGNIFICANCE STATEMENT: During acute base excess, the renal collecting duct ß -intercalated cells ( ß -ICs) become activated to increase urine base excretion. This process is dependent on pendrin and cystic fibrosis transmembrane regulator (CFTR) expressed in the apical membrane of ß -ICs. The signal that leads to activation of this process was unknown. Plasma secretin levels increase during acute alkalosis, and the secretin receptor (SCTR) is functionally expressed in ß -ICs. We find that mice with global knockout for the SCTR lose their ability to acutely increase renal base excretion. This forces the mice to lower their ventilation to cope with this challenge. Our findings suggest that secretin is a systemic bicarbonate-regulating hormone, likely being released from the small intestine during alkalosis. BACKGROUND: The secretin receptor (SCTR) is functionally expressed in the basolateral membrane of the ß -intercalated cells of the kidney cortical collecting duct and stimulates urine alkalization by activating the ß -intercalated cells. Interestingly, the plasma secretin level increases during acute metabolic alkalosis, but its role in systemic acid-base homeostasis was unclear. We hypothesized that the SCTR system is essential for renal base excretion during acute metabolic alkalosis. METHODS: We conducted bladder catheterization experiments, metabolic cage studies, blood gas analysis, barometric respirometry, perfusion of isolated cortical collecting ducts, immunoblotting, and immunohistochemistry in SCTR wild-type and knockout (KO) mice. We also perfused isolated rat small intestines to study secretin release. RESULTS: In wild-type mice, secretin acutely increased urine pH and pendrin function in isolated perfused cortical collecting ducts. These effects were absent in KO mice, which also did not sufficiently increase renal base excretion during acute base loading. In line with these findings, KO mice developed prolonged metabolic alkalosis when exposed to acute oral or intraperitoneal base loading. Furthermore, KO mice exhibited transient but marked hypoventilation after acute base loading. In rats, increased blood alkalinity of the perfused upper small intestine increased venous secretin release. CONCLUSIONS: Our results suggest that loss of SCTR impairs the appropriate increase of renal base excretion during acute base loading and that SCTR is necessary for acute correction of metabolic alkalosis. In addition, our findings suggest that blood alkalinity increases secretin release from the small intestine and that secretin action is critical for bicarbonate homeostasis.
Assuntos
Alcalose , Bicarbonatos , Receptores Acoplados a Proteínas G , Animais , Camundongos , Ratos , Alcalose/metabolismo , Bicarbonatos/metabolismo , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Secretina , Transportadores de SulfatoRESUMO
PURPOSE OF REVIEW: Glucagon increases hepatic glucose production and in patients with metabolic diseases, glucagon secretion is increased contributing to diabetic hyperglycemia. This review explores the role of amino acids and lipids in the regulation of glucagon secretion and how it may be disturbed in metabolic diseases such as obesity and metabolic associated fatty liver disease (MAFLD). RECENT FINDINGS: Human and animal studies have shown that MAFLD is associated with glucagon resistance towards amino acid catabolism, resulting in elevated plasma levels of amino acids. A recent clinical study showed that MAFLD is also associated with glucagon resistance towards lipid metabolism. In contrast, MAFLD may not decrease hepatic sensitivity to the stimulatory effects of glucagon on glucose production. SUMMARY: Elevated plasma levels of amino acids and lipids associated with MAFLD may cause diabetogenic hyperglucagonemia. MAFLD and glucagon resistance may therefore be causally linked to hyperglycemia and the development of type 2 diabetes.