Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
PLoS Pathog ; 19(11): e1011643, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37972198

RESUMO

Cytomegaloviruses (CMVs) are host species-specific in their replication. It is a hallmark of all CMVs that productive primary infection is controlled by concerted innate and adaptive immune responses in the immunocompetent host. As a result, the infection usually passes without overt clinical symptoms and develops into latent infection, referred to as "latency". During latency, the virus is maintained in a non-replicative state from which it can reactivate to productive infection under conditions of waning immune surveillance. In contrast, infection of an immunocompromised host causes CMV disease with viral multiple-organ histopathology resulting in organ failure. Primary or reactivated CMV infection of hematopoietic cell transplantation (HCT) recipients in a "window of risk" between therapeutic hemato-ablative leukemia therapy and immune system reconstitution remains a clinical challenge. Studies in the mouse model of experimental HCT and infection with murine CMV (mCMV), followed by clinical trials in HCT patients with human CMV (hCMV) reactivation, have revealed a protective function of virus-specific CD8 T cells upon adoptive cell transfer (AT). Memory CD8 T cells derived from latently infected hosts are a favored source for immunotherapy by AT. Strikingly low numbers of these cells were found to prevent CMV disease, suggesting either an immediate effector function of few transferred cells or a clonal expansion generating high numbers of effector cells. In the murine model, the memory population consists of resting central memory T cells (TCM), as well as of conventional effector-memory T cells (cTEM) and inflationary effector-memory T cells (iTEM). iTEM increase in numbers over time in the latently infected host, a phenomenon known as 'memory inflation' (MI). They thus appeared to be a promising source for use in immunotherapy. However, we show here that iTEM contribute little to the control of infection after AT, which relies almost entirely on superior proliferative potential of TCM.


Assuntos
Infecções por Citomegalovirus , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Citomegalovirus , Imunoterapia , Transferência Adotiva , Antivirais
2.
Med Microbiol Immunol ; 212(2): 153-163, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35364731

RESUMO

Conflicting hallmarks are attributed to cytomegalovirus (CMV) infections. CMVs are viewed as being master tacticians in "immune evasion" by subverting essentially all pathways of innate and adaptive immunity. On the other hand, CMV disease is undeniably restricted to the immunologically immature or immunocompromised host, whereas an intact immune system prevents virus spread, cytopathogenic tissue infection, and thus pathological organ manifestations. Therefore, the popular term "immune evasion" is apparently incongruous with the control of CMV infections in the immunocompetent human host as well as in experimental non-human primate and rodent models. Here, we review recent work from the mouse model that resolves this obvious discrepancy for the example of the virus-specific CD8 T-cell response. Immune evasion proteins encoded by murine CMV (mCMV) interfere with the cell surface trafficking of antigenic peptide-loaded MHC class-I (pMHC-I) complexes and thereby reduce their numbers available for interaction with T-cell receptors of CD8 T cells; but this inhibition is incomplete. As a consequence, while CD8 T cells with low interaction avidity fail to receive sufficient signaling for triggering their antiviral effector function in the presence of immune evasion proteins in infected cells, a few pMHC-I complexes that escape to the cell surface are sufficient for sensitizing high-avidity CD8 T cells. It is thus proposed that the function of immune evasion proteins is to raise the avidity threshold for activation, so that in the net result, only high-avidity cells can protect. An example showing that immune evasion proteins can make the difference between life and death is the lacking control of infection in a mouse model of MHC-I histoincompatible hematopoietic cell transplantation (allogeneic-HCT). In this model, only low-avidity CD8 T cells become reconstituted by HCT and almost all infected HCT recipients die of multiple-organ CMV disease when immune evasion proteins are expressed. In contrast, lowering the avidity threshold for antigen recognition by deletion of immune evasion proteins allowed control of infection and rescued from death.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Camundongos , Animais , Humanos , Citomegalovirus , Linfócitos T CD8-Positivos , Modelos Animais de Doenças
3.
PLoS Pathog ; 15(3): e1007595, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30845208

RESUMO

Despite a broad cell-type tropism, cytomegalovirus (CMV) is an evidentially pulmonary pathogen. Predilection for the lungs is of medical relevance in immunocompromised recipients of hematopoietic cell transplantation, in whom interstitial CMV pneumonia is a frequent and, if left untreated, fatal clinical manifestation of human CMV infection. A conceivable contribution of CMV to airway diseases of other etiology is an issue that so far attracted little medical attention. As the route of primary CMV infection upon host-to-host transmission in early childhood involves airway mucosa, coincidence of CMV airway infection and exposure to airborne environmental antigens is almost unavoidable. For investigating possible consequences of such a coincidence, we established a mouse model of airway co-exposure to CMV and ovalbumin (OVA) representing a protein antigen of an inherently low allergenic potential. Accordingly, intratracheal OVA exposure alone failed to sensitize for allergic airway disease (AAD) upon OVA aerosol challenge. In contrast, airway infection at the time of OVA sensitization predisposed for AAD that was characterized by airway inflammation, IgE secretion, thickening of airway epithelia, and goblet cell hyperplasia. This AAD histopathology was associated with a T helper type 2 (Th2) transcription profile in the lungs, including IL-4, IL-5, IL-9, and IL-25, known inducers of Th2-driven AAD. These symptoms were all prevented by a pre-challenge depletion of CD4+ T cells, but not of CD8+ T cells. As to the underlying mechanism, murine CMV activated migratory CD11b+ as well as CD103+ conventional dendritic cells (cDCs), which have been associated with Th2 cytokine-driven AAD and with antigen cross-presentation, respectively. This resulted in an enhanced OVA uptake and recruitment of the OVA-laden cDCs selectively to the draining tracheal lymph nodes for antigen presentation. We thus propose that CMV, through activation of migratory cDCs in the airway mucosa, can enhance the allergenic potential of otherwise poorly allergenic environmental protein antigens.


Assuntos
Alérgenos/metabolismo , Citomegalovirus/metabolismo , Células Dendríticas/imunologia , Alérgenos/efeitos adversos , Animais , Apresentação de Antígeno/imunologia , Antígenos CD11/imunologia , Citomegalovirus/patogenicidade , Células Dendríticas/microbiologia , Modelos Animais de Doenças , Feminino , Hipersensibilidade , Inflamação , Pulmão/fisiopatologia , Pulmão/virologia , Pneumopatias/etiologia , Pneumopatias/virologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina , Células Th2 , Ativação Viral/imunologia
4.
Bioconjug Chem ; 32(12): 2480-2484, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34755515

RESUMO

Infections caused by viruses are difficult to treat due to their life cycle, which depends on the replication machinery of the respective host cells. Commonly used antiviral strategies are based upon the application of, e.g., entry inhibitors and other compounds that interfere with virus replication. Besides possible side effects, the rapid occurrence of viral resistance poses a great challenge. Antimicrobial peptides (AMPs), as a component of the innate immunity, are able to kill bacteria and fungi and, in addition, may inactivate enveloped viruses. Many AMPs exert their biological function by impairing microbial and viral membranes. As a result, membrane integrity is lost, leading to bacterial killing and virus inactivation. Covalently immobilized AMPs have been shown to be biocidal too, which is of special interest when the presence of a soluble agent is to be avoided. Here, we demonstrate the conjugation of the human AMP LL37 to a solid support consisting of cellulose beads and its capability to inactivate murine cytomegalovirus as an example. Virus inactivation was highly reduced by several orders of magnitude when an appropriate coupling strategy was chosen. Coupling the AMP via a long and hydrophilic polyethylene glycol spacer proved to perform less effective compared to LL37 immobilization using a short cross-linker. In addition, it was found that LL37-conjugated beads did not induce hemolysis, a prerequisite for the development of blood contacting applications. Our findings may serve as a basis for the development of an implementable device that is able to reduce the viral load under real-life conditions.


Assuntos
Peptídeos Antimicrobianos
5.
PLoS Pathog ; 12(12): e1006072, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27977791

RESUMO

Cytomegalovirus (CMV) elicits long-term T-cell immunity of unparalleled strength, which has allowed the development of highly protective CMV-based vaccine vectors. Counterintuitively, experimental vaccines encoding a single MHC-I restricted epitope offered better immune protection than those expressing entire proteins, including the same epitope. To clarify this conundrum, we generated recombinant murine CMVs (MCMVs) encoding well-characterized MHC-I epitopes at different positions within viral genes and observed strong immune responses and protection against viruses and tumor growth when the epitopes were expressed at the protein C-terminus. We used the M45-encoded conventional epitope HGIRNASFI to dissect this phenomenon at the molecular level. A recombinant MCMV expressing HGIRNASFI on the C-terminus of M45, in contrast to wild-type MCMV, enabled peptide processing by the constitutive proteasome, direct antigen presentation, and an inflation of antigen-specific effector memory cells. Consequently, our results indicate that constitutive proteasome processing of antigenic epitopes in latently infected cells is required for robust inflationary responses. This insight allows utilizing the epitope positioning in the design of CMV-based vectors as a novel strategy for enhancing their efficacy.


Assuntos
Antígenos Virais/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Epitopos Imunodominantes/imunologia , Vacinas Virais/imunologia , Animais , Antígenos Virais/metabolismo , Cromatografia Líquida , Epitopos de Linfócito T/imunologia , Citometria de Fluxo , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Espectrometria de Massas , Camundongos , Muromegalovirus/imunologia , Mutagênese Sítio-Dirigida , Peptídeos , Vacinas Sintéticas/imunologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
6.
PLoS Pathog ; 11(2): e1004481, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25658831

RESUMO

Infections with cytomegalovirus (CMV) can cause severe disease in immunosuppressed patients and infected newborns. Innate as well as cellular and humoral adaptive immune effector functions contribute to the control of CMV in immunocompetent individuals. None of the innate or adaptive immune functions are essential for virus control, however. Expansion of γδ T cells has been observed during human CMV (HCMV) infection in the fetus and in transplant patients with HCMV reactivation but the protective function of γδ T cells under these conditions remains unclear. Here we show for murine CMV (MCMV) infections that mice that lack CD8 and CD4 αß-T cells as well as B lymphocytes can control a MCMV infection that is lethal in RAG-1(-/-) mice lacking any T- and B-cells. γδ T cells, isolated from infected mice can kill MCMV infected target cells in vitro and, importantly, provide long-term protection in infected RAG-1(-/-) mice after adoptive transfer. γδ T cells in MCMV infected hosts undergo a prominent and long-lasting phenotypic change most compatible with the view that the majority of the γδ T cell population persists in an effector/memory state even after resolution of the acute phase of the infection. A clonotypically focused Vγ1 and Vγ2 repertoire was observed at later stages of the infection in the organs where MCMV persists. These findings add γδ T cells as yet another protective component to the anti-CMV immune response. Our data provide clear evidence that γδ T cells can provide an effective control mechanism of acute CMV infections, particularly when conventional adaptive immune mechanisms are insufficient or absent, like in transplant patient or in the developing immune system in utero. The findings have implications in the stem cell transplant setting, as antigen recognition by γδ T cells is not MHC-restricted and dual reactivity against CMV and tumors has been described.


Assuntos
Complexo CD3/imunologia , Infecções por Herpesviridae/imunologia , Subpopulações de Linfócitos T/imunologia , Transferência Adotiva , Animais , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Muromegalovirus
7.
PLoS Pathog ; 10(4): e1004100, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763809

RESUMO

The lungs are a noted predilection site of acute, latent, and reactivated cytomegalovirus (CMV) infections. Interstitial pneumonia is the most dreaded manifestation of CMV disease in the immunocompromised host, whereas in the immunocompetent host lung-infiltrating CD8 T cells confine the infection in nodular inflammatory foci and prevent viral pathology. By using murine CMV infection as a model, we provide evidence for a critical role of mast cells (MC) in the recruitment of protective CD8 T cells to the lungs. Systemic infection triggered degranulation selectively in infected MC. The viral activation of MC was associated with a wave of CC chemokine ligand 5 (CCL5) in the serum of C57BL/6 mice that was MC-derived as verified by infection of MC-deficient Kit(W-sh/W-sh) "sash" mutants. In these mutants, CD8 T cells were recruited less efficiently to the lungs, correlating with enhanced viral replication and delayed virus clearance. A causative role for MC was verified by MC reconstitution of "sash" mice restoring both, efficient CD8 T-cell recruitment and infection control. These results reveal a novel crosstalk axis between innate and adaptive immune defense against CMV, and identify MC as a hitherto unconsidered player in the immune surveillance at a relevant site of CMV disease.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Pulmão/imunologia , Mastócitos/imunologia , Muromegalovirus/imunologia , Pneumonia Viral/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/patologia , Pulmão/patologia , Pulmão/virologia , Mastócitos/patologia , Camundongos , Camundongos Mutantes , Muromegalovirus/metabolismo , Pneumonia Viral/genética , Pneumonia Viral/patologia
8.
Cell Immunol ; 308: 44-56, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26717854

RESUMO

Adoptive transfer of virus epitope-specific CD8 T cells is an immunotherapy option to control cytomegalovirus (CMV) infection and prevent CMV organ disease in immunocompromised solid organ transplantation (SOT) and hematopoietic cell transplantation (HCT) recipients. The therapy aims at an early, selective recognition and cytolysis of infected cells for preventing viral spread in tissues with no adverse immunopathogenic side-effects by attack of uninfected bystander cells. Here we describe that virus epitope-specific, cloned T-cell lines lyse target cells that present the cognate antigenic peptide to the TCR, but simultaneously have the potential to lyse uninfected cells expressing the CD28 ligand CD80 (B7-1). While TCR-mediated cytolysis requires co-receptor CD8 and depends on perforin, the TCR-independent and viral epitope-independent cytolysis through CD28-CD80 signaling does not require CD8 on the effector cells and is perforin-independent. Importantly, this non-cognate cytolysis pathway leads to bystander cytolysis of CD80-expressing B-cell blasts and thereby inhibits pan-specific antibody production.


Assuntos
Linfócitos B/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Transplante de Células-Tronco Hematopoéticas , Imunoterapia Adotiva/métodos , Transplante de Órgãos , Linfócitos T Citotóxicos/imunologia , Animais , Formação de Anticorpos , Antígeno B7-1/metabolismo , Efeito Espectador , Antígenos CD28/metabolismo , Células Clonais , Citotoxicidade Imunológica , Epitopos de Linfócito T/metabolismo , Imunoterapia Adotiva/efeitos adversos , Camundongos
9.
Med Microbiol Immunol ; 204(3): 317-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25805564

RESUMO

Control of murine cytomegalovirus (mCMV) infection is mediated primarily by CD8 T cells, with four specificities dominating in BALB/c mice. Functional deletion of the respective immunodominant epitopes (IDEs) in mutant virus Δ4IDE revealed a still efficient control of infection. In a murine model of hematopoietic cell transplantation and infection with Δ4IDE, an mCMV-specific open reading frame (ORF) library screening assay indicated a strong CD8 T cell reactivity against the ORF-M54 product, the highly conserved and essential mCMV homolog of human CMV DNA polymerase UL54, which is a known inducer of in vivo protection against mCMV by DNA immunization. Applying bioinformatic algorithms for CD8 T cell epitope prediction, the top-scoring peptides were used to stimulate ex vivo-isolated CD8 T cells and to generate cytolytic T cell lines; yet, this approach failed to identify M54 epitope(s). As an alternative, a peptide library consisting of 549 10-mers with an offset of two amino acids (aa), covering the complete aa-sequence of the M54 protein, was synthesized and used for the stimulation. A region of 12 aa proved to encompass an epitope. An 'alanine walk' over this antigenic 12-mer and all possible 11-, 10- and 9-mers derived thereof revealed aa-residues critical for antigenicity, and terminal truncations identified the H-2D(d) presented 8-mer M5483-90 as the optimal epitope. An increased frequency of the corresponding CD8 T cells in the absence of the 4 IDEs indicated immunodomination by the IDE-specific CD8 T cells as a mechanism by which the generation of M54-specific CD8 T cells is inhibited after infection with wild-type mCMV.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Infecções por Herpesviridae/imunologia , Epitopos Imunodominantes/imunologia , Muromegalovirus/imunologia , Fases de Leitura Aberta/imunologia , Sequência de Aminoácidos , Animais , Antígenos Virais/química , Antígenos Virais/imunologia , Biologia Computacional , Citotoxicidade Imunológica , Mapeamento de Epitopos , Epitopos de Linfócito T/química , Feminino , Genoma Viral , Infecções por Herpesviridae/virologia , Antígeno de Histocompatibilidade H-2D/imunologia , Epitopos Imunodominantes/química , Camundongos , Muromegalovirus/genética , Mutação , Fases de Leitura Aberta/genética , Biblioteca de Peptídeos , Peptídeos/química , Peptídeos/imunologia
10.
Histochem Cell Biol ; 142(1): 61-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24504601

RESUMO

Novel approaches of localization microscopy have opened new insights into the molecular nano-cosmos of cells. We applied a special embodiment called spectral position determination microscopy (SPDM) that has the advantage to run with standard fluorescent dyes or proteins under standard preparation conditions. Pointillist images with a resolution in the order of 10 nm can be obtained by SPDM. Therefore, vector pEYFP-m164, encoding the murine cytomegalovirus glycoprotein gp36.5/m164 fused to enhanced yellow fluorescent protein, was transiently transfected into COS-7 cells. This protein shows exceptional intracellular trafficking dynamics, moving within the endoplasmic reticulum (ER) and outer nuclear membrane. The molecular positions of gp36.5/m164 were visualized and determined by SPDM imaging. From the position point patterns of the protein molecules, their arrangements were quantified by next neighbour distance analyses. Three different structural arrangements were discriminated: (a) a linear distribution along the membrane, (b) a highly structured distribution in the ER, and (c) a homogenous distribution in the cellular cytoplasm. The results indicate that the analysis of next neighbour distances on the nano-scale allows the identification and discrimination of different structural arrangements of molecules within their natural cellular environment.


Assuntos
Glicoproteínas/análise , Muromegalovirus/química , Proteínas do Envelope Viral/análise , Animais , Proteínas de Bactérias/química , Células COS , Células Cultivadas , Chlorocebus aethiops , Glicoproteínas/genética , Proteínas Luminescentes/química , Camundongos , Microscopia de Fluorescência , Proteínas do Envelope Viral/genética
11.
Front Immunol ; 15: 1355153, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426094

RESUMO

Cytomegalovirus (CMV) infection is the most critical infectious complication in recipients of hematopoietic cell transplantation (HCT) in the period between a therapeutic hematoablative treatment and the hematopoietic reconstitution of the immune system. Clinical investigation as well as the mouse model of experimental HCT have consistently shown that timely reconstitution of antiviral CD8 T cells is critical for preventing CMV disease in HCT recipients. Reconstitution of cells of the T-cell lineage generates naïve CD8 T cells with random specificities among which CMV-specific cells need to be primed by presentation of viral antigen for antigen-specific clonal expansion and generation of protective antiviral effector CD8 T cells. For CD8 T-cell priming two pathways are discussed: "direct antigen presentation" by infected professional antigen-presenting cells (pAPCs) and "antigen cross-presentation" by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Current view in CMV immunology favors the cross-priming hypothesis with the argument that viral immune evasion proteins, known to interfere with the MHC class-I pathway of direct antigen presentation by infected cells, would inhibit the CD8 T-cell response. While the mode of antigen presentation in the mouse model of CMV infection has been studied in the immunocompetent host under genetic or experimental conditions excluding either pathway of antigen presentation, we are not aware of any study addressing the medically relevant question of how newly generated naïve CD8 T cells become primed in the phase of lympho-hematopoietic reconstitution after HCT. Here we used the well-established mouse model of experimental HCT and infection with murine CMV (mCMV) and pursued the recently described approach of up- or down-modulating direct antigen presentation by using recombinant viruses lacking or overexpressing the central immune evasion protein m152 of mCMV, respectively. Our data reveal that the magnitude of the CD8 T-cell response directly reflects the level of direct antigen presentation.


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Reconstituição Imune , Camundongos , Animais , Citomegalovirus , Apresentação de Antígeno , Evasão da Resposta Imune , Linfócitos T CD8-Positivos , Proteínas Virais/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
12.
Front Immunol ; 14: 1272166, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149242

RESUMO

CD8 T cells are important antiviral effectors in the adaptive immune response to cytomegaloviruses (CMV). Naïve CD8 T cells can be primed by professional antigen-presenting cells (pAPCs) alternatively by "direct antigen presentation" or "antigen cross-presentation". In the case of direct antigen presentation, viral proteins are expressed in infected pAPCs and enter the classical MHC class-I (MHC-I) pathway of antigen processing and presentation of antigenic peptides. In the alternative pathway of antigen cross-presentation, viral antigenic material derived from infected cells of principally any cell type is taken up by uninfected pAPCs and eventually also fed into the MHC class-I pathway. A fundamental difference, which can be used to distinguish between these two mechanisms, is the fact that viral immune evasion proteins that interfere with the cell surface trafficking of peptide-loaded MHC-I (pMHC-I) complexes are absent in cross-presenting uninfected pAPCs. Murine cytomegalovirus (mCMV) models designed to disrupt either of the two presentation pathways revealed that both are possible in principle and can substitute each other. Overall, however, the majority of evidence has led to current opinion favoring cross-presentation as the canonical pathway. To study priming in the normal host genetically competent in both antigen presentation pathways, we took the novel approach of enhancing or inhibiting direct antigen presentation by using recombinant viruses lacking or overexpressing a key mCMV immune evasion protein. Against any prediction, the strongest CD8 T-cell response was elicited under the condition of intermediate direct antigen presentation, as it exists for wild-type virus, whereas the extremes of enhanced or inhibited direct antigen presentation resulted in an identical and weaker response. Our findings are explained by direct antigen presentation combined with a negative feedback regulation exerted by the newly primed antiviral effector CD8 T cells. This insight sheds a completely new light on the acquisition of viral immune evasion genes during virus-host co-evolution.


Assuntos
Apresentação de Antígeno , Muromegalovirus , Camundongos , Animais , Citomegalovirus , Evasão da Resposta Imune , Linfócitos T CD8-Positivos , Proteínas Virais , Antivirais
13.
Eur J Immunol ; 41(3): 645-56, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21264853

RESUMO

Human Thy-1 (CD90) has been shown to mediate adhesion of inflammatory cells to activated microvascular endothelial cells via interaction with Mac-1 (CD11b/CD18) in vitro. Since there are no data showing the physiological relevance of Thy-1 for the recruitment of inflammatory cells in vivo, different inflammation models were investigated in Thy-1-deficient mice and littermate controls. In thioglycollate-induced peritonitis, the number of neutrophils and monocytes was significantly diminished in Thy-1-deficient mice. During acute lung inflammation, the extravasation of eosinophils and monocytes into the lung was significantly reduced in Thy-1-deficient mice. Moreover, during chronic lung inflammation, the influx of eosinophils and monocytes was also strongly decreased. These effects were independent of Thy-1 expression on T cells, as shown by the transplantation of WT BM into the Thy-1-deficient mice. In spite of the strong Thy-1 expression on T cells in the chimeric mice, the extravasation of the inflammatory cells in these mice was significantly diminished, compared to control mice. Finally, the altered number and composition of infiltrating leukocytes in Thy-1-deficient mice modified the chemokine/cytokine and protease expression at the site of inflammation. In conclusion, Thy-1 is involved in the control of inflammatory cell recruitment and, thus, also in conditioning the inflammatory microenvironment.


Assuntos
Inflamação/imunologia , Leucócitos/imunologia , Antígenos Thy-1/metabolismo , Animais , Adesão Celular/imunologia , Movimento Celular/imunologia , Quimiocinas/metabolismo , Células Endoteliais/imunologia , Células Endoteliais/patologia , Eosinófilos/imunologia , Eosinófilos/patologia , Humanos , Técnicas In Vitro , Inflamação/patologia , Interleucinas/metabolismo , Leucócitos/patologia , Leucócitos/fisiologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/patologia , Neutrófilos/imunologia , Neutrófilos/patologia , Peptídeo Hidrolases/metabolismo , Peritonite/imunologia , Peritonite/patologia , Peritonite/fisiopatologia , Pneumonia/imunologia , Pneumonia/patologia , Pneumonia/fisiopatologia , Linfócitos T/imunologia , Linfócitos T/patologia , Antígenos Thy-1/genética , Quimeras de Transplante/imunologia
14.
Med Microbiol Immunol ; 201(4): 541-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22976556

RESUMO

Adoptive transfer of virus-specific donor-derived CD8 T cells is a therapeutic option to prevent cytomegalovirus (CMV) disease in recipients of hematopoietic cell transplantation. Due to their high coding capacity, human as well as animal CMVs have the potential to encode numerous CD8 T cell epitopes. Although the CD8 T cell response to CMVs is indeed broadly specific in that it involves epitopes derived from almost every open reading frame when tested for cohorts of immune CMV carriers representing the polymorphic MHC/HLA distribution in the population, the response in any one individual is directed against relatively few epitopes selected by the private combination of MHC/HLA alleles. Of this individually selected set of epitopes, few epitopes are 'immunodominant' in terms of magnitude of the response directed against them, while others are 'subdominant' according to this definition. In the assumption that 'immunodominance' indicates 'relevance' in antiviral control, research interest was focused on the immunodominant epitopes (IDEs) and their potential use in immunotherapy and in vaccines. The murine model has provided 'proof of concept' for the efficacy of CD8 T cell therapy of CMV infection. By experimental modulation of the CD8 T cell 'immunome' of murine CMV constructing an IDE deletion mutant, we have used this established cytoimmunotherapy model (a) for evaluating the actual contribution of IDEs to the control of infection and (b) for answering the question whether antigenicity-determining codon polymorphisms in IDE-encoding genes of CMV strains impact on the efficacy of CD8 T cell immunotherapy in case the donor and the recipient harbor different CMV strains.


Assuntos
Transferência Adotiva , Infecções por Citomegalovirus/terapia , Citomegalovirus/imunologia , Epitopos Imunodominantes/imunologia , Animais , Modelos Animais de Doenças , Feminino , Hospedeiro Imunocomprometido , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento
15.
Med Microbiol Immunol ; 201(4): 497-512, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961127

RESUMO

Medical interest in cytomegalovirus (CMV) is based on lifelong neurological sequelae, such as sensorineural hearing loss and mental retardation, resulting from congenital infection of the fetus in utero, as well as on CMV disease with multiple organ manifestations and graft loss in recipients of hematopoietic cell transplantation or solid organ transplantation. CMV infection of transplantation recipients occurs consequent to reactivation of virus harbored in a latent state in the transplanted donor cells and tissues, or in the tissues of the transplantation recipient herself or himself. Hence, CMV infection is a paradigm for a viral infection that causes disease primarily in the immunocompromised host, while infection of the immunocompetent host is associated with only mild and nonspecific symptoms so that it usually goes unnoticed. Thus, CMV is kept under strict immune surveillance. These medical facts are in apparent conflict with the notion that CMVs in general, human CMV as well as animal CMVs, are masters of 'immune evasion', which during virus-host co-speciation have convergently evolved sophisticated mechanisms to avoid their recognition by innate and adaptive immunity of their respective host species, with viral genes apparently dedicated to serve just this purpose (Reddehase in Nat Rev Immunol 2:831-844, 2002). With focus on viral interference with antigen presentation to CD8 T cells in the preclinical model of murine CMV infection, we try here to shed some more light on the in vivo balance between host immune surveillance of CMV infection and viral 'immune evasion' strategies.


Assuntos
Apresentação de Antígeno , Antígenos de Histocompatibilidade Classe I/imunologia , Evasão da Resposta Imune , Muromegalovirus/imunologia , Muromegalovirus/patogenicidade , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Animais , Hospedeiro Imunocomprometido , Camundongos
16.
Med Microbiol Immunol ; 201(4): 513-25, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22961126

RESUMO

Cytomegalovirus (CMV) disease with multiple organ manifestations is the most feared viral complication limiting the success of hematopoietic cell transplantation as a therapy of hematopoietic malignancies. A timely endogenous reconstitution of CD8 T cells controls CMV infection, and adoptive transfer of antiviral CD8 T cells is a therapeutic option to prevent CMV disease by bridging the gap between an early CMV reactivation and delayed endogenous reconstitution of protective immunity. Preclinical research in murine models has provided 'proof of concept' for CD8 T-cell therapy of CMV disease. Protection by CD8 T cells appears to be in conflict with the finding that CMVs encode proteins that inhibit antigen presentation to CD8 T cells by interfering with the constitutive trafficking of peptide-loaded MHC class I molecules (pMHC-I complexes) to the cell surface. Here, we have systematically explored antigen presentation in the presence of the three currently noted immune evasion proteins of murine CMV in all possible combinations and its modulation by pre-treatment of cells with interferon-gamma (IFN-γ). The data reveal improvement in antigen processing by pre-treatment with IFN-γ can almost overrule the inhibitory function of immune evasion molecules in terms of pMHC-I expression levels capable of triggering most of the specific CD8 T cells, though the intensity of stimulation did not retrieve their full functional capacity. Notably, an in vivo conditioning of host tissue cells with IFN-γ in adoptive cell transfer recipients constitutively overexpressing IFN-γ (B6-SAP-IFN-γ mice) enhanced the antiviral efficiency of CD8 T cells in this transgenic cytoimmunotherapy model.


Assuntos
Transferência Adotiva , Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Evasão da Resposta Imune , Interferon gama/imunologia , Animais , Citomegalovirus/imunologia , Infecções por Citomegalovirus/terapia , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Resultado do Tratamento
17.
Med Microbiol Immunol ; 201(4): 527-39, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972232

RESUMO

Reactivation of latent cytomegalovirus (CMV) in the transient state of immunodeficiency after hematopoietic cell transplantation (HCT) is the most frequent and severe viral complication endangering leukemia therapy success. By infecting the bone marrow (BM) stroma of the transplantation recipient, CMV can directly interfere with BM repopulation by the transplanted donor-derived hematopoietic cells and thus delay immune reconstitution of the recipient. Cytopathogenic virus spread in tissues can result in CMV disease with multiple organ manifestations of which interstitial pneumonia is the most feared. There exists a 'window of risk' between hematoablative treatment and reconstitution of antiviral immunity after HCT, whereby timely reconstitution of antiviral CD8 T cells is a recognized positive prognostic parameter for the control of reactivated CMV infection and prevention of CMV disease. Supplementation of endogenous reconstitution by adoptive cell transfer of 'ready-to-go' effector and/or memory virus epitope-specific CD8 T cells is a therapeutic option to bridge the 'window of risk.' Preclinical research in murine models of CMV disease has been pivotal by providing 'proof of concept' for a benefit from CD8 T-cell therapy of HCT-associated CMV disease (reviewed in Holtappels et al. Med Microbiol Immunol 197:125-134, 2008). Here, we give an update of our previous review with focus on parameters that determine the efficacy of adoptive immunotherapy of CMV infection by antiviral CD8 T cells in the murine model.


Assuntos
Transferência Adotiva , Infecções por Citomegalovirus/terapia , Animais , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Camundongos , Resultado do Tratamento
18.
Viruses ; 14(6)2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35746617

RESUMO

Cytomegaloviruses (CMVs) are controlled by innate and adaptive immune responses in an immunocompetent host while causing multiple organ diseases in an immunocompromised host. A risk group of high clinical relevance comprises transiently immunocompromised recipients of hematopoietic cell transplantation (HCT) in the "window of risk" between eradicative therapy of hematopoietic malignancies and complete reconstitution of the immune system. Cellular immunotherapy by adoptive transfer of CMV-specific CD8 T cells is an option to prevent CMV disease by controlling a primary or reactivated infection. While experimental models have revealed a viral epitope-specific antiviral function of cognate CD8 T cells, the site at which control is exerted remained unidentified. The observation that remarkably few transferred cells protect all organs may indicate an early blockade of virus dissemination from a primary site of productive infection to various target organs. Alternatively, it could indicate clonal expansion of a few transferred CD8 T cells for preventing intra-tissue virus spread after successful initial organ colonization. Our data in the mouse model of murine CMV infection provide evidence in support of the second hypothesis. We show that transferred cells vigorously proliferate to prevent virus spread, and thus viral histopathology, by confining and eventually resolving tissue infection within nodular inflammatory foci.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos , Hospedeiro Imunocomprometido , Camundongos
19.
J Gen Virol ; 92(Pt 9): 1994-2005, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21632567

RESUMO

Expansion of the CD8 T-cell memory pool, also known as 'memory inflation', for certain but not all viral epitopes in latently infected host tissues is a special feature of the immune response to cytomegalovirus. The L(d)-presented murine cytomegalovirus (mCMV) immediate-early (IE) 1 peptide is the prototype of an epitope that is associated with memory inflation. Based on the detection of IE1 transcripts in latently infected lungs it was previously proposed that episodes of viral gene expression and antigenic activity due to desilencing of a limited number of viral genes may drive epitope-specific memory inflation. This would imply direct antigen presentation through latently infected host tissue cells rather than cell death-associated cross-presentation of viral antigens derived from productively infected cells through uninfected, professional antigen-presenting cells (profAPCs). To address the role of bone marrow-derived profAPCs in CD8 T-cell priming and memory to mCMV, we have used here a combined sex-mismatched and MHC class-I mismatched dual-marker bone marrow chimera model in which presentation of the IE1 epitope is restricted to donor-derived sry(+)L(d+) cells of haematopoietic differentiation lineages. Successful CD8 T-cell priming specific for the L(d)- and D(d)-presented inflationary epitopes IE1 and m164, respectively, but selective failure in IE1 epitope-specific memory inflation in these chimeras indicates different modes of antigen presentation involved in CD8 T-cell priming and memory inflation. These data suggest that memory inflation during mCMV latency requires expression of the epitope-presenting MHC class-I molecule by latently infected non-haematopoietic host tissue cells and thus predicts a role for direct antigen presentation in memory inflation.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Muromegalovirus/imunologia , Latência Viral/imunologia , Animais , Epitopos/imunologia , Feminino , Proteínas Imediatamente Precoces/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/fisiologia
20.
Gastroenterology ; 138(1): 336-46, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19737567

RESUMO

BACKGROUND & AIMS: Dendritic cell activation through ligation of pattern recognition receptors leading to full functional maturation causes induction of CD8(+) T-cell immunity through increased delivery of costimulatory signals instead of tolerance. Here we investigate whether organ-resident antigen-presenting cells, such as liver sinusoidal endothelial cells (LSECs), also switch from tolerogenic to immunogenic CD8(+) T-cell activation upon such stimulation. METHODS: Murine LSECs were isolated by immunomagnetic separation and analyzed for functional maturation upon triggering pattern recognition receptors or viral infection employing gene expression analysis and T cell coculture assays. In vivo relevance of the findings was confirmed with bone-marrow chimeric animals. RESULTS: LSECs expressed numerous pattern recognition receptors that allowed for sentinel function, but ligand-induced activation of these receptors was not sufficient to overcome tolerance induction of CD8(+) T cells. Importantly, viral infection with murine cytomegalovirus caused functional maturation of antigen-presenting LSECs and was sufficient to promote antigen-specific differentiation into effector CD8(+) T cells in the absence of dendritic cells and independent of CD80/86. CONCLUSIONS: These results shed new light on the generation of organ-specific immunity and may contribute to overcoming tolerance in relevant situations, such as cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Infecções por Herpesviridae/imunologia , Tolerância Imunológica/imunologia , Fígado/virologia , Muromegalovirus , Transferência Adotiva , Animais , Medula Óssea , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Células Cultivadas , Quimera , Células Endoteliais/citologia , Células Endoteliais/virologia , Ligantes , Fígado/citologia , Fígado/imunologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA