RESUMO
The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.
Assuntos
Separação Celular/instrumentação , Separação Celular/métodos , Vidro/química , Técnicas Analíticas Microfluídicas , Tamanho Celular , Desenho de Equipamento , Células HL-60 , Humanos , Microscopia de Fluorescência , Fibras Ópticas , FenótipoRESUMO
Monodisperse water-in-oil-in-water (WOW) double emulsions have been prepared using microfluidic glass devices designed and built primarily from off the shelf components. The systems were easy to assemble and use. They were capable of producing double emulsions with an outer droplet size from 100 to 40 µm. Depending on how the devices were operated, double emulsions containing either single or multiple water droplets could be produced. Pulsed-field gradient self-diffusion NMR experiments have been performed on the monodisperse water-in-oil-in-water double emulsions to obtain information on the inner water droplet diameter and the distribution of the water in the different phases of the double emulsion. This has been achieved by applying regularization methods to the self-diffusion data. Using these methods the stability of the double emulsions to osmotic pressure imbalance has been followed by observing the change in the size of the inner water droplets over time.
Assuntos
Emulsões/química , Espectroscopia de Ressonância Magnética/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Óleos/química , Água/química , Difusão , Desenho de Equipamento , Pressão Osmótica , Tamanho da PartículaRESUMO
We report the development of a microfabricated gas chromatography system suitable for the separation of volatile organic compounds (VOCs) and compatible with use as a portable measurement device. Hydrofluoric acid etching of 95x95mm Schott B270 wafers has been used to give symmetrical hemi-spherical channels within a glass substrate. Two matching glass plates were subsequently cold bonded with the channels aligned; the flatness of the glass surfaces resulted in strong bonding through van der Waals forces. The device comprised gas fluidic interconnections, injection zone and 7.5 and 1.4m long, 320microm internal diameter capillaries. Optical microscopy confirmed the capillaries to have fully circular channel profiles. Direct column heating and cooling could be achieved using a combination of resistive heaters and Peltier devices. The low thermal conductivity of glass allowed for multiple uniform temperature zones to be achieved within a single glass chip. Temperature control over the range 10-200 degrees C was achieved with peak power demand of approximately 25W. The 7.5m capillary column was static coated with a 2microm film of non-polar dimethylpolysiloxane stationary phase. A standard FID and a modified lightweight 100mW photoionization detector (PID) were coupled to the column and performance tested with gas mixtures of monoaromatic and monoterpene species at the parts per million concentration level. The low power GC-PID device showed good performance for a small set of VOCs and sub ng detection sensitivity to monoaromatics.