Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(15): e2113884119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35377808

RESUMO

Diet shifts and food waste reduction have the potential to reduce the land and biodiversity footprint of the food system. In this study, we estimated the amount of land used to produce food consumed in the United States and the number of species threatened with extinction as a result of that land use. We predicted potential changes to the biodiversity threat under scenarios of food waste reduction and shifts to recommended healthy and sustainable diets. Domestically produced beef and dairy, which require vast land areas, and imported fruit, which has an intense impact on biodiversity per unit land, have especially high biodiversity footprints. Adopting the Planetary Health diet or the US Department of Agriculture (USDA)­recommended vegetarian diet nationwide would reduce the biodiversity footprint of food consumption. However, increases in the consumption of foods grown in global biodiversity hotspots both inside and outside the United States, especially fruits and vegetables, would partially offset the reduction. In contrast, the USDA-recommended US-style and Mediterranean-style diets would increase the biodiversity threat due to increased consumption of dairy and farmed fish. Simply halving food waste would benefit global biodiversity more than half as much as all Americans simultaneously shifting to a sustainable diet. Combining food waste reduction with the adoption of a sustainable diet could reduce the biodiversity footprint of US food consumption by roughly half. Species facing extinction because of unsustainable food consumption practices could be rescued by reducing agriculture's footprint; diet shifts and food waste reduction can help us get there.


Assuntos
Alimentos , Eliminação de Resíduos , Biodiversidade , Conservação dos Recursos Naturais/métodos , Dieta , Fazendas , Humanos , Estados Unidos
2.
Reg Environ Change ; 18(5): 1387-1401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31007594

RESUMO

Understanding how cities can transform organic waste into a valuable resource is critical to urban sustainability. The capture and recycling of phosphorus (P), and other essential nutrients, from human excreta is particularly important as an alternative organic fertilizer source for agriculture. However, the complex set of socio-environmental factors influencing urban human excreta management is not yet sufficiently integrated into sustainable P research. Here, we synthesize information about the pathways P can take through urban sanitation systems along with barriers and facilitators to P recycling across cities. We examine five case study cities by using a sanitation chains approach: Accra, Ghana; Buenos Aires, Argentina; Beijing, China; Baltimore, USA; and London, England. Our cross-city comparison shows that London and Baltimore recycle a larger percentage of P from human excreta back to agricultural lands than other cities, and that there is a large diversity in socio-environmental factors that affect the patterns of recycling observed across cities. Our research highlights conditions that may be "necessary but not sufficient" for P recycling, including access to capital resources. Path dependencies of large sanitation infrastructure investments in the Global North contrast with rapidly urbanizing cities in the Global South, which present opportunities for alternative sanitation development pathways. Understanding such city-specific social and environmental barriers to P recycling options could help address multiple interacting societal objectives related to sanitation and provide options for satisfying global agricultural nutrient demand.

3.
Environ Sci Technol ; 48(18): 10552-60, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25133756

RESUMO

Compensatory mitigation is commonly used to replace aquatic natural resources being lost or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from annual monitoring reports indicate that the ratio of lengths of stream impacted to lengths of stream mitigation projects were <1 for many projects, and most mitigation was implemented on perennial streams while most impacts were to ephemeral and intermittent streams. Regulatory requirements for assessing project outcome were minimal; visual assessments were the most common and 97% of the projects reported suboptimal or marginal habitat even after 5 years of monitoring. Less than a third of the projects provided biotic or chemical data; most of these were impaired with biotic indices below state standards and stream conductivity exceeding federal water quality criteria. Levels of selenium known to impair aquatic life were reported in 7 of the 11 projects that provided Se data. Overall, the data show that mitigation efforts being implemented in southern Appalachia for coal mining are not meeting the objectives of the Clean Water Act to replace lost or degraded streams ecosystems and their functions.


Assuntos
Minas de Carvão , Ecossistema , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental/métodos , Rios , Região dos Apalaches , Monitoramento Ambiental/legislação & jurisprudência , Recuperação e Remediação Ambiental/legislação & jurisprudência , Recuperação e Remediação Ambiental/tendências , Regulamentação Governamental , Qualidade da Água
4.
Sci Data ; 9(1): 523, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-36030258

RESUMO

Assessment of socio-environmental problems and the search for solutions often require intersecting geospatial data on environmental factors and human population densities. In the United States, Census data is the most common source for information on population. However, timely acquisition of such data at sufficient spatial resolution can be problematic, especially in cases where the analysis area spans urban-rural gradients. With this data release, we provide a 30-m resolution population estimate for the contiguous United States. The workflow dasymetrically distributes Census block level population estimates across all non-transportation impervious surfaces within each Census block. The methodology is updatable using the most recent Census data and remote sensing-based observations of impervious surface area. The dataset, known as the U.G.L.I (updatable gridded lightweight impervious) population dataset, compares favorably against other population data sources, and provides a useful balance between resolution and complexity.

5.
Sci Rep ; 12(1): 10472, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729265

RESUMO

Ponds are often identified by their small size and shallow depths, but the lack of a universal evidence-based definition hampers science and weakens legal protection. Here, we compile existing pond definitions, compare ecosystem metrics (e.g., metabolism, nutrient concentrations, and gas fluxes) among ponds, wetlands, and lakes, and propose an evidence-based pond definition. Compiled definitions often mentioned surface area and depth, but were largely qualitative and variable. Government legislation rarely defined ponds, despite commonly using the term. Ponds, as defined in published studies, varied in origin and hydroperiod and were often distinct from lakes and wetlands in water chemistry. We also compared how ecosystem metrics related to three variables often seen in waterbody definitions: waterbody size, maximum depth, and emergent vegetation cover. Most ecosystem metrics (e.g., water chemistry, gas fluxes, and metabolism) exhibited nonlinear relationships with these variables, with average threshold changes at 3.7 ± 1.8 ha (median: 1.5 ha) in surface area, 5.8 ± 2.5 m (median: 5.2 m) in depth, and 13.4 ± 6.3% (median: 8.2%) emergent vegetation cover. We use this evidence and prior definitions to define ponds as waterbodies that are small (< 5 ha), shallow (< 5 m), with < 30% emergent vegetation and we highlight areas for further study near these boundaries. This definition will inform the science, policy, and management of globally abundant and ecologically significant pond ecosystems.


Assuntos
Lagoas , Áreas Alagadas , Ecossistema , Lagos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA