Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genome Res ; 32(6): 1183-1198, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35609992

RESUMO

Over a thousand different transcription factors (TFs) bind with varying occupancy across the human genome. Chromatin immunoprecipitation (ChIP) can assay occupancy genome-wide, but only one TF at a time, limiting our ability to comprehensively observe the TF occupancy landscape, let alone quantify how it changes across conditions. We developed TF occupancy profiler (TOP), a Bayesian hierarchical regression framework, to profile genome-wide quantitative occupancy of numerous TFs using data from a single chromatin accessibility experiment (DNase- or ATAC-seq). TOP is supervised, and its hierarchical structure allows it to predict the occupancy of any sequence-specific TF, even those never assayed with ChIP. We used TOP to profile the quantitative occupancy of hundreds of sequence-specific TFs at sites throughout the genome and examined how their occupancies changed in multiple contexts: in approximately 200 human cell types, through 12 h of exposure to different hormones, and across the genetic backgrounds of 70 individuals. TOP enables cost-effective exploration of quantitative changes in the landscape of TF binding.


Assuntos
Cromatina , Fatores de Transcrição , Teorema de Bayes , Sítios de Ligação/genética , Cromatina/genética , Genoma Humano , Humanos , Ligação Proteica , Fatores de Transcrição/metabolismo
2.
PLoS Comput Biol ; 17(1): e1008223, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513136

RESUMO

Gene regulatory network inference is essential to uncover complex relationships among gene pathways and inform downstream experiments, ultimately enabling regulatory network re-engineering. Network inference from transcriptional time-series data requires accurate, interpretable, and efficient determination of causal relationships among thousands of genes. Here, we develop Bootstrap Elastic net regression from Time Series (BETS), a statistical framework based on Granger causality for the recovery of a directed gene network from transcriptional time-series data. BETS uses elastic net regression and stability selection from bootstrapped samples to infer causal relationships among genes. BETS is highly parallelized, enabling efficient analysis of large transcriptional data sets. We show competitive accuracy on a community benchmark, the DREAM4 100-gene network inference challenge, where BETS is one of the fastest among methods of similar performance and additionally infers whether causal effects are activating or inhibitory. We apply BETS to transcriptional time-series data of differentially-expressed genes from A549 cells exposed to glucocorticoids over a period of 12 hours. We identify a network of 2768 genes and 31,945 directed edges (FDR ≤ 0.2). We validate inferred causal network edges using two external data sources: Overexpression experiments on the same glucocorticoid system, and genetic variants associated with inferred edges in primary lung tissue in the Genotype-Tissue Expression (GTEx) v6 project. BETS is available as an open source software package at https://github.com/lujonathanh/BETS.


Assuntos
Glucocorticoides/farmacologia , Modelos Estatísticos , Transcriptoma/efeitos dos fármacos , Células A549 , Algoritmos , Biologia Computacional , Humanos , Pulmão/química , Pulmão/metabolismo , Aprendizado de Máquina , Software , Transcriptoma/genética
3.
Genome Res ; 28(9): 1272-1284, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30097539

RESUMO

Glucocorticoids are potent steroid hormones that regulate immunity and metabolism by activating the transcription factor (TF) activity of glucocorticoid receptor (GR). Previous models have proposed that DNA binding motifs and sites of chromatin accessibility predetermine GR binding and activity. However, there are vast excesses of both features relative to the number of GR binding sites. Thus, these features alone are unlikely to account for the specificity of GR binding and activity. To identify genomic and epigenetic contributions to GR binding specificity and the downstream changes resultant from GR binding, we performed hundreds of genome-wide measurements of TF binding, epigenetic state, and gene expression across a 12-h time course of glucocorticoid exposure. We found that glucocorticoid treatment induces GR to bind to nearly all pre-established enhancers within minutes. However, GR binds to only a small fraction of the set of accessible sites that lack enhancer marks. Once GR is bound to enhancers, a combination of enhancer motif composition and interactions between enhancers then determines the strength and persistence of GR binding, which consequently correlates with dramatic shifts in enhancer activation. Over the course of several hours, highly coordinated changes in TF binding and histone modification occupancy occur specifically within enhancers, and these changes correlate with changes in the expression of nearby genes. Following GR binding, changes in the binding of other TFs precede changes in chromatin accessibility, suggesting that other TFs are also sensitive to genomic features beyond that of accessibility.


Assuntos
Elementos Facilitadores Genéticos , Código das Histonas , Motivos de Nucleotídeos , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional , Linhagem Celular Tumoral , Epigênese Genética , Humanos , Ligação Proteica , Fatores de Transcrição/metabolismo
4.
Am J Hum Genet ; 91(2): 293-302, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22863189

RESUMO

Idiopathic generalized epilepsy (IGE) is a complex disease with high heritability, but little is known about its genetic architecture. Rare copy-number variants have been found to explain nearly 3% of individuals with IGE; however, it remains unclear whether variants with moderate effect size and frequencies below what are reliably detected with genome-wide association studies contribute significantly to disease risk. In this study, we compare the exome sequences of 118 individuals with IGE and 242 controls of European ancestry by using next-generation sequencing. The exome-sequenced epilepsy cases include study subjects with two forms of IGE, including juvenile myoclonic epilepsy (n = 93) and absence epilepsy (n = 25). However, our discovery strategy did not assume common genetic control between the subtypes of IGE considered. In the sequence data, as expected, no variants were significantly associated with the IGE phenotype or more specific IGE diagnoses. We then selected 3,897 candidate epilepsy-susceptibility variants from the sequence data and genotyped them in a larger set of 878 individuals with IGE and 1,830 controls. Again, no variant achieved statistical significance. However, 1,935 variants were observed exclusively in cases either as heterozygous or homozygous genotypes. It is likely that this set of variants includes real risk factors. The lack of significant association evidence of single variants with disease in this two-stage approach emphasizes the high genetic heterogeneity of epilepsy disorders, suggests that the impact of any individual single-nucleotide variant in this disease is small, and indicates that gene-based approaches might be more successful for future sequencing studies of epilepsy predisposition.


Assuntos
Epilepsia Generalizada/genética , Exoma/genética , Predisposição Genética para Doença/genética , Sequência de Bases , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA , População Branca/genética
5.
PLoS Genet ; 6(9): e1001111, 2010 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-20838461

RESUMO

We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.


Assuntos
Genoma Humano/genética , Análise de Sequência de DNA , Sequência de Bases , Estudos de Casos e Controles , Variações do Número de Cópias de DNA/genética , Bases de Dados Genéticas , Éxons/genética , Fator VIII/genética , Duplicação Gênica/genética , Técnicas de Inativação de Genes , Genética Populacional , Genótipo , Hemofilia A/genética , Humanos , Mutação INDEL/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta/genética , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único/genética
6.
Cell Syst ; 7(2): 146-160.e7, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30031775

RESUMO

The glucocorticoid receptor (GR) is a hormone-inducible transcription factor involved in metabolic and anti-inflammatory gene expression responses. To investigate what controls interactions between GR binding sites and their target genes, we used in situ Hi-C to generate high-resolution, genome-wide maps of chromatin interactions before and after glucocorticoid treatment. We found that GR binding to the genome typically does not cause new chromatin interactions to target genes but instead acts through chromatin interactions that already exist prior to hormone treatment. Both glucocorticoid-induced and glucocorticoid-repressed genes increased interactions with distal GR binding sites. In addition, while glucocorticoid-induced genes increased interactions with transcriptionally active chromosome compartments, glucocorticoid-repressed genes increased interactions with transcriptionally silent compartments. Lastly, while the architectural DNA-binding proteins CTCF and RAD21 were bound to most chromatin interactions, we found that glucocorticoid-responsive chromatin interactions were depleted for CTCF binding but enriched for RAD21. Together, these findings offer new insights into the mechanisms underlying GC-mediated gene activation and repression.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Sítios de Ligação , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Cromatina/genética , Proteínas de Ligação a DNA , Genoma Humano , Humanos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA