Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Prosthet Dent ; 127(3): 489-496, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33303192

RESUMO

STATEMENT OF PROBLEM: Although several manufacturers market soft metal milling blanks and systems, comprehensive comparative studies of differences in properties across commercially available soft metal milling alloys are lacking. PURPOSE: The purpose of this in vitro study was to compare the microstructures and mechanical properties of 3 soft metal milling cobalt-chromium (Co-Cr) alloys (Ceramill Sintron, Soft Metal, and Sintermetall). MATERIAL AND METHODS: Disk-shaped specimens (for surface characterization and hardness test) and dumbbell-shaped specimens (for tensile test as per International Organization for Standardization (ISO) 22674) were prepared by following each soft metal milling manufacturer's instructions. The crystal structures and microstructures of the 3 alloys were evaluated with optical microscopy, X-ray diffractometry (XRD), and scanning electron microscopy with electron backscattered diffraction (EBSD). The mechanical properties were investigated with a tensile test and Vickers hardness test (n=6). The results of the mechanical (tensile and hardness) tests were analyzed with 1-way ANOVA and the post hoc Tukey multiple comparison test (α=.05). RESULTS: The Sintermetall specimen showed a finer microstructure and more porosity than the other 2 alloys. The XRD and EBSD analyses showed that the γ (face-centered cubic, fcc) matrix phase was predominant in the Ceramill Sintron alloy and the ε (hexagonal close-packed, hcp) matrix phase was predominant in the Soft Metal alloy. The Sintermetall alloy showed a slightly higher amount of ε phase than γ phase, with more chromium carbide formation than the other 2 alloys. The Ceramill Sintron alloy showed a significantly higher tensile strength than the other 2 alloys (P<.05), but a significantly lower 2% offset yield strength than the other 2 alloys (P<.05). The highest elongation was found in the Ceramill Sintron alloy, followed by the Sintermetall and Soft Metal alloys. The elastic modulus was the highest in the Sintermetall alloy, followed by the Soft Metal and Ceramill Sintron alloys. No significant differences in Vickers hardness values were detected among the 3 alloys (P=.263). CONCLUSIONS: The different commercially available soft metal milling blanks and systems produced dissimilar alloys in terms of crystal structures and microstructures and, as a result, different mechanical properties.


Assuntos
Ligas , Ligas de Cromo , Ligas de Cromo/química , Teste de Materiais , Ligas Metalo-Cerâmicas/química , Propriedades de Superfície , Tecnologia , Resistência à Tração
2.
Nano Lett ; 19(4): 2291-2298, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30860390

RESUMO

The real-time selective detection of disease-related markers in blood using biosensors has great potential for use in the early diagnosis of diseases and infections. However, this potential has not been realized thus far due to difficulties in interfacing the sensor with blood and achieving transparent circuits that are essential for detecting of target markers (e.g., protein, ions, etc.) in a complex blood environment. Herein, we demonstrate the real-time detection of a specific protein and ion in blood without a skin incision. Complementary metal-oxide-semiconductor technology was used to fabricate silicon micropillar array (SiMPA) electrodes with a height greater than 600 µm, and the surface of the SiMPA electrodes was functionalized with a self-assembling artificial peptide (SAP) as a receptor for target markers in blood, i.e., cholera toxin (CTX) and mercury(II) ions (Hg). The detection of CTX was investigated in both in vitro (phosphate-buffered saline and human blood serum, HBO model) and in vivo (mouse model) modes via impedance analysis. In the in vivo mode, the SiMPA pierces the skin, comes into contact with the blood system, and creates comprehensive circuits that include all the elements such as electrodes, blood, and receptors. The SiMPA achieves electrically transparent circuits and, thus, can selectively detect CTX in the blood in real time with a high sensitivity of 50 pM and 5 nM in the in vitro and in vivo modes, respectively. Mercury(II) ions can also be detected in both the in vitro and the in vivo modes by changing the SAP. The results illustrate that a robust sensor that can detect a variety of molecular species in the blood system in real time that will be helpful for the early diagnosis of disease and infections.


Assuntos
Biomarcadores/sangue , Técnicas Biossensoriais , Toxina da Cólera/isolamento & purificação , Mercúrio/isolamento & purificação , Animais , Proteínas Sanguíneas/química , Proteínas Sanguíneas/isolamento & purificação , Toxina da Cólera/sangue , Humanos , Limite de Detecção , Mercúrio/sangue , Camundongos , Semicondutores , Silício/química
3.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198074

RESUMO

Despite numerous advantages of using porous hydroxyapatite (HAp) scaffolds in bone regeneration, the material is limited in terms of osteoinduction. In this study, the porous scaffold made from nanosized HAp was coated with different concentrations of osteoinductive aqueous methylsulfonylmethane (MSM) solution (2.5, 5, 10, and 20%) and the corresponding MH scaffolds were referred to as MH2.5, MH5, MH10, and MH20, respectively. The results showed that all MH scaffolds resulted in burst release of MSM for up to 7 d. Cellular experiments were conducted using MC3T3-E1 preosteoblast cells, which showed no significant difference between the MH2.5 scaffold and the control with respect to the rate of cell proliferation (p > 0.05). There was no significant difference between each group at day 4 for alkaline phosphatase (ALP) activity, though the MH2.5 group showed higher level of activity than other groups at day 10. Calcium deposition, using alizarin red staining, showed that cell mineralization was significantly higher in the MH2.5 scaffold than that in the HAp scaffold (p < 0.0001). This study indicated that the MH2.5 scaffold has potential for both osteoinduction and osteoconduction in bone regeneration.


Assuntos
Dimetil Sulfóxido/farmacologia , Durapatita/farmacologia , Osteogênese/efeitos dos fármacos , Sulfonas/farmacologia , Alicerces Teciduais/química , Células 3T3 , Animais , Regeneração Óssea/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Camundongos , Porosidade , Engenharia Tecidual/métodos
4.
J Nanosci Nanotechnol ; 19(4): 2395-2398, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487007

RESUMO

In this study, we investigated the effect of sintering temperature (1300, 1350, or 1400 °C) and holding time (1 or 2 h) on the mechanical properties of a cobalt-chromium (Co-Cr) alloy (Soft Metal) produced by milling/post-sintering, using a tensile test (n = 6). Prior to the test, the different nanostructures arising from the sintering conditions were also analyzed. The phase ratio of γ (face-centered cubic) phase to ɛ (hexagonal close-packed) phase increased mainly with increasing temperature. The formation of Cr23C6 carbide was greatest in the 1350 °C groups when compared to the other temperature groups. The 1400 °C groups had a substantially greater grain size than the 1300 °C and 1350 °C groups, together with a significant number of annealing twins inside the matrix phases. Overall, the 1350 °C groups showed the most superior properties. The 1400 °C groups showed a mean 0.2% yield strength under 500 MPa. The holding times did not significantly affect the mechanical properties (p > 0.05).

5.
J Nanosci Nanotechnol ; 19(2): 1044-1047, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360197

RESUMO

Recently, a simple surface modification treatment of titanium (Ti) was developed to produce nano-and micro-scale features on the surfaces via simple immersion in an oxidative aqueous solution (30% hydrogen peroxide/5% sodium bicarbonate). However, this treatment method of Ti surfaces requires a relatively long immersion time (4 h) in the oxidative solution. In this study, we investigated whether an increase in the temperature of the oxidative etching solution can shorten the immersion time of Ti effectively. Polished grade 5 dental Ti (Ti-6Al-4V) discs were immersed in the oxidative aqueous solution either for 30 or 60 min. The temperature of the etching solution was maintained at 25 (similar to room temperature), 35, or 45 °C during etching. The etched surfaces were studied in terms of micro- and nano-structures, surface roughness, and wettability (surface energy). The increase in the temperature of the solution accelerated the etching effect of Ti and created both micro- and nano-structures on the surfaces more effectively. In particular, immersion for 60 min at the solution temperature of 35 °C significantly increased the surface roughness and wettability, although the etching effect was enhanced further at the solution temperature of 45 °C.

6.
J Prosthet Dent ; 122(5): 475-481, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30982615

RESUMO

STATEMENT OF PROBLEM: Few studies have investigated changes in the marginal fit of metal-ceramic restorations fabricated by selective laser melting (SLM) techniques after the application of veneering ceramic. PURPOSE: The purpose of this in vitro study was to evaluate the marginal fit (silicone replica technique) and internal porosity (cross-section analysis) of cobalt-chromium (Co-Cr) alloy metal crowns prepared by using 2 SLM processes together with a casting technique before and after ceramic veneering. MATERIAL AND METHODS: Cast single Co-Cr crowns and SLM-processed crowns with large (SLML) or small (SLMS) porosity were prepared (n=20/group), and half were subjected to ceramic veneering. On a single Co-Cr master die, the marginal discrepancy (MD) and absolute marginal discrepancy (AMD) of the crowns were measured by using the silicone replica technique, in which each replica was cut into 4 sections before and after ceramic veneering (n=10 for each subgroup). After marginal fit measurements, each metal coping was cross-sectioned into 4 parts, and 5 rectangular optical microscope images were acquired on both outer corners of each quarter. The porosity was then calculated as the ratio of the black-to-white pixels on the binarized images. The data were analyzed by 2-way ANOVA and the post hoc test (Tukey or Student t test) (α=.05). RESULTS: Before ceramic veneering, the 2 SLM groups showed significantly larger MDs than the casting group (56.4 ±10.4 µm) (P<.05). A significant increase in MD after ceramic veneering was detected only in the SLML group (P<.001). The AMD values showed a similar trend with MD values. The 2 SLM groups (in particular, SLML) showed a significantly higher amount of porosity than the casting group before ceramic veneering (P<.001). Only the SLML group showed a significant decrease in the amount of porosity after ceramic veneering (P<.001). CONCLUSIONS: Within the limitations of this in vitro study, large internal porosity within the SLM-fabricated Co-Cr metal copings affected the marginal fit of the metal-ceramic crowns. However, all the MD values of the 3 groups were lower than the acceptable range even after the application of veneering ceramic.


Assuntos
Técnica de Fundição Odontológica , Adaptação Marginal Dentária , Cerâmica , Desenho Assistido por Computador , Coroas , Planejamento de Prótese Dentária , Humanos , Teste de Materiais , Ligas Metalo-Cerâmicas , Propriedades de Superfície
7.
J Nanosci Nanotechnol ; 18(3): 2037-2040, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448707

RESUMO

The selective laser melting (SLM) process parameters, which directly determine the melting behavior of the metallic powders, greatly affect the nanostructure and surface roughness of the resulting 3D object. This study investigated the effect of various laser process parameters (laser power, scan rate, and scan line spacing) on the surface roughness of a nickel-chromium (Ni-Cr) alloy that was three-dimensionally (3D) constructed using SLM. Single-line formation tests were used to determine the optimal laser power of 200 W and scan rate of 98.8 mm/s, which resulted in beads with an optimal profile. In the subsequent multi-layer formation tests, the 3D object with the smoothest surface (Ra = 1.3 µm) was fabricated at a scan line spacing of 60 µm (overlap ratio = 73%). Narrow scan line spacing (and thus large overlap ratios) was preferred over wide scan line spacing to reduce the surface roughness of the 3D body. The findings of this study suggest that the laser power, scan rate, and scan line spacing are the key factors that control the surface quality of Ni-Cr alloys produced by SLM.

8.
Biotechnol Bioeng ; 112(9): 1936-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25851987

RESUMO

Biomaterials developed for controlled drug delivery have demonstrated excellent results in the present study. A biomaterial prepared using hydroxyapatite (HAp) was shown to have a hollow structure with the presence of interconnected pores to house drug carriers. The poly(lactic-co-glycolic acid) particles were used as drug carriers loaded with dexamethasone, a corticosteroid that is known to promote osteoinduction. The surface of the drug carriers was modified using polyethyleneimine, and then conjugated to the surface of HAp granules. The hollow HAp granules had drug carriers on both their inner and outer surfaces and showed a controlled drug release rate that was comparable to that of granules containing drug carriers on their outer surface alone. The pores were designed for insertion of drug carriers and preosteoblasts. Consequently, the biomaterials influenced cellular behavior by first promoting cell proliferation and then inducing early stage osteogenic differentiation. The effects of controlled release rate were evidenced for up to two weeks after cell seeding, resulting in an increase of osteogenic differentiation. In summary, drug carriers loaded onto hollow HAp granules were shown to be suitable for patients who require replacement of missing bone for repair of bone fractures that are extremely complex, pose a significant health risk to the patient, or fail to heal properly.


Assuntos
Materiais Biocompatíveis/química , Dexametasona/química , Portadores de Fármacos/química , Durapatita/química , Ácido Láctico/química , Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacologia , Dexametasona/farmacocinética , Dexametasona/farmacologia , Durapatita/farmacologia , Camundongos , Osteogênese/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
9.
J Mater Sci Mater Med ; 25(8): 1991-2001, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796626

RESUMO

The development of a biomaterial substitute that can promote bone regeneration in massive defects has remained as a significant clinical challenge even using bone marrow cells or growth factors. Without an active, thriving cell population present throughout and stable anchored to the construct, exceptional bone regeneration does not occur. An engineered micro-channel structures scaffold within each trabecular has been designed to overcome some current limitations involving the cultivation and habitation of cells in large, volumetric scaffolds to repair massive skeletal defect. We created a scaffold with a superior fluid retention capacity that also may absorb bone marrow cells and provide growth factor-containing body fluids such as blood clots and/or serum under physiological conditions. The scaffold is composed of 3 basic structures (1) porous trabecular network (300-400 µm) similar to that of human trabecular bones, (2) micro-size channels (25-70 µm) within each trabecular septum which mimic intra-osseous channels such as Haversian canals and Volkmann's canals with body fluid access, diffusion, nutritional supply and gas exchange, and (3) nano-size pores (100-400 nm) on the surface of each septum that allow immobilized cells to anchor. Combinatorial effects of these internal structures result in a host-adapting construct that enhances cell retention and habitation throughout the 3 cm-height and 4 cm-length bridge-shaped scaffold.


Assuntos
Osso e Ossos/lesões , Alicerces Teciduais , Células 3T3 , Animais , Camundongos
10.
J Phys Ther Sci ; 26(7): 1051-3, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25140095

RESUMO

[Purpose] This study was conducted to investigate the changes in torque and power during flexion and extension of the shoulder and the knee joints caused by midline correction using mouth guards made from different materials in adults with mild midline discrepancy. [Subjects] The subjects of this study were males (n=12) in their 20s who showed a 3-5 mm difference between the midlines of the upper and lower teeth but had normal masticatory function. [Methods] The torque and average power of the lower limb and upper limb were measured during flexion and extension according to various types of mouth guard. [Results] There were significant differences in relative torque and average power between three conditions (no mouth guard, soft-type mouth guard, and hard-type mouth guard) at shoulder flexion and extension. There were no significant differences in relative torque and average power between the three conditions at knee flexion and extension. [Conclusions] These results suggest that use of a mouth guard is a method by which people with a mild midline discrepancy can improve the stability of the entire body.

11.
Materials (Basel) ; 17(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893971

RESUMO

Surface treatment of implants facilitates osseointegration, with nanostructured surfaces exhibiting accelerated peri-implant bone regeneration. This study compared bone-to-implant contact (BIC) in implants with hydroxyapatite (HA), sand-blasted and acid-etched (SLA), and SLA with calcium (Ca)-coated (XPEED®) surfaces. Seventy-five disk-shaped grade 4 Ti specimens divided into three groups were prepared, with 16 implants per group tested in New Zealand white rabbits. Surface characterization was performed using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), digital microscopy, and a contact angle analyzer. Cell viability, proliferation, and adhesion were assessed using MC3T3-E1 cells. Apatite formation was evaluated using modified simulated body fluid (m-SBF) incubation. After 4 weeks of healing, the outcomes reviewed were BIC, bone area (BA), removal torque tests, and histomorphometric evaluation. A microstructure analysis revealed irregular pores across all groups, with the XPEED group exhibiting a nanostructured Ca-coated surface. Surface characterization showed a crystalline CaTiO3 layer on XPEED surfaces, with evenly distributed Ca penetrating the implants. All surfaces provided excellent environments for cell growth. The XPEED and SLA groups showed significantly higher cell density and viability with superior osseointegration than HA (p < 0.05); XPEED exhibited the highest absorbance values. Thus, XPEED surface treatment improved implant performance, biocompatibility, stability, and osseointegration.

12.
J Yeungnam Med Sci ; 41(2): 80-85, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247035

RESUMO

BACKGROUND: This study aimed to compare and evaluate the marginal fit of nanocomposite computer-aided design/computer-aided manufacturing (CAD/CAM) inlays. Three types of nanocomposite CAD/CAM blocks (HASEM, VITA Enamic, and Lava Ultimate) were used as materials. METHODS: Class II disto-occlusal inlay restorations were prepared on a typodont mandibular right first molar using diamond rotary instruments. The inlays were fabricated using CAD/CAM technology and evaluated using the silicone replica technique to measure marginal gaps at five locations on each inlay. The data were analyzed by two-way analysis of variance and Tukey post hoc tests ( α=0.05). RESULTS: There were no significant differences in the marginal gaps based on the type of nanocomposite CAD/CAM inlay used (p=0.209). However, there was a significant difference in the marginal gaps between the measurement regions. The gingival region consistently exhibited a larger marginal gap than the axial and occlusal regions (p<0.001). CONCLUSION: Within the limitations of this in vitro study, the measurement location significantly influenced the marginal fit of class II disto-occlusal inlay restorations. However, there were no significant differences in the marginal gaps among the different types of CAD/CAM blocks. Furthermore, the overall mean marginal fits of the class II disto-occlusal inlay restorations made with the three types of nanocomposite CAD/CAM blocks were within the clinically acceptable range.

13.
Sci Rep ; 14(1): 15837, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982204

RESUMO

45S5 Bioglass (BG) is composed of a glass network with silicate based on the component and can be doped with various therapeutic ions for the enhancement of hard tissue therapy. Nanoceria (CeO2) has been shown to indicate redox reaction and enhance the biological response. However, few studies focus on the proportion of CeO2-doped and its effect on the cellular bioactivity of CeO2-doped BG (CBG). In this study, we synthesized the CBG series with increasing amounts of doping CeO2 ranging (1 to 12) wt.%. The synthesized CBG series examined the characterization, mineralization capacity, and cellular activity against BG. Our results showed that the CBG series exhibited a glass structure and indicated the redox states between Ce3+ and Ce4+, thus they showed the antioxidant activity by characterization of Ce. The CBG series had a stable glass network structure similar to BG, which showed the preservation of bioactivity by exhibiting mineralization on the surface. In terms of biological response, although the CBG series showed the proliferative activity of pre-osteoblastic cells similar to BG, the CBG series augmented not only the alkaline phosphatase activity but also the osteogenic marker in the mRNA level. As stimulated the osteogenic activity, the CBG series improved the biomineralization. In conclusion, the CBG series might have a potential application for hard tissue therapeutic purposes.


Assuntos
Cerâmica , Cério , Vidro , Oxirredução , Cério/química , Cério/farmacologia , Oxirredução/efeitos dos fármacos , Vidro/química , Camundongos , Cerâmica/química , Cerâmica/farmacologia , Animais , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Linhagem Celular , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Fosfatase Alcalina/metabolismo
14.
J Phys Ther Sci ; 25(11): 1387-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24396194

RESUMO

[Purpose] The purpose of this study was to measure the muscle activities of the trunk muscles and upper limb muscles during maximum isometric contraction when temporomandibular joint alignment was achieved with a mandibular orthopedic repositioning appliance in order provide basic data on the effects of mandibular orthopedic repositioning appliance on the entire body. [Subjects] The present study was conducted with healthy Korean adults in their 20s (males=10, females=10). [Methods] An 8 channel surface electromyography system was used to measure the muscle activities of the upper limb muscles and neck muscles of the subjects during maximum isometric contraction with and without use of a mandibular orthopedic repositioning appliance. [Results] The maximum isometric contractions of the trunk and upper limb muscles when mandibular orthopedic repositioning appliance were used were compared with those when no mandibular orthopedic repositioning appliance was used. The results showed that the sternocleidomastoid muscle, cervical and lumbar erector spinae, upper trapezius, biceps, triceps, rectus abdominis and internal oblique and external oblique muscles all showed significant increases in maximum isometric contractions with a mandibular orthopedic repositioning appliance. [Conclusion] The use of a mandibular orthopedic repositioning appliance is considered to be a method for normal adults to improve the stability of the entire body with the improvement of the stability of the TMJ. The proximal improvement in stability improves of the proximal thereby improving not only muscle strength with increased muscle activation but also stability during exercises.

15.
Materials (Basel) ; 16(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630008

RESUMO

Titanium (Ti) and Ti-based alloys are commonly used in dental implants, and surface modifications of dental implants are important for achieving osseointegration (i.e., direct connection between the implant surface and bone). This study investigated the effect of an eco-friendly etching solution-a hydrogen peroxide-sodium bicarbonate mixture-on the surface properties and contact angles of osteoblast adhesion and proliferation on Ti surfaces. Disk-shaped Ti specimens were prepared using different surface treatments (machining, sandblasting, and sandblasting/acid-etching), and they were immersed in the etching solution and ultrasonically cleaned. Surface characterization was performed using scanning electron microscopy, digital microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. MG-63 osteoblasts were cultured on the specimens, and their adhesion to the specimen surface and proliferation were examined using staining and the MTT assay, respectively. Additional etching with the etching solution caused the formation of nano/micro hierarchical structures, increased surface roughness, and enhanced hydrophilicity. Osteoblast adhesion and proliferation were found to improve on the modified surfaces. The eco-friendly etching method has the potential to enhance the biological properties of Ti implant surfaces and thereby improve dental implant performance.

16.
ACS Omega ; 7(6): 4821-4831, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187302

RESUMO

Mineralized collagen fibrils are important basic building blocks of calcified tissues, such as bone and dentin. Polydopamine (PDA) can introduce functional groups, i.e., hydroxyl and amine groups, on the surfaces of type I collagen (Col-I) as possible nucleation sites of calcium phosphate (CaP) crystallization. Molecular bindings in between PDA and Col-I fibrils (Col-PDA) have been found to significantly reduce the interfacial energy. The wetting effect, mainly hydrophilicity due to the functional groups, escalates the degree of mineralization. The assembly of Col-I molecules into fibrils was initiated at the designated number of collagenous molecules and PDA. In contrast to the infiltration of amorphous calcium phosphate (ACP) precursors into the Col-I matrix by polyaspartic acid (pAsp), this collagen assembly process allows nucleation and ACP to exist in advance by PDA in the intrafibrillar matrix. PDA bound to specific sites, i.e., gap and overlap zones, by the regular arrangement of Col-I fibrils enhanced ACP nucleation and thus mineralization. As a result, the c-axis-oriented platelets of crystalline hydroxyapatite in the Col-I fibril matrix were observed in the enhanced mineralization through PDA functionalization.

17.
Biomater Res ; 26(1): 42, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068587

RESUMO

BACKGROUND: Bone regeneration research is currently ongoing in the scientific community. Materials approved for clinical use, and applied to patients, have been developed and produced. However, rather than directly affecting bone regeneration, these materials support bone induction, which regenerates bone. Therefore, the research community is still researching bone tissue regeneration. In the papers published so far, it is hard to find an improvement in the theory of bone regeneration. This review discusses the relationship between the existing theories on hard tissue growth and regeneration and the biomaterials developed so far for this purpose and future research directions. MAINBODY: Highly complex nucleation and crystallization in hard tissue involves the coordinated action of ions and/or molecules that can produce different organic and inorganic composite biomaterials. In addition, the healing of bone defects is also affected by the dynamic conditions of ions and nutrients in the bone regeneration process. Inorganics in the human body, especially calcium- and/or phosphorus-based materials, play an important role in hard tissues. Inorganic crystal growth is important for treating or remodeling the bone matrix. Biomaterials used in bone tissue regeneration require expertise in various fields of the scientific community. Chemical knowledge is indispensable for interpreting the relationship between biological factors and their formation. In addition, sources of energy for the nucleation and crystallization processes of such chemical bonds and minerals that make up the bone tissue must be considered. However, the exact mechanism for this process has not yet been elucidated. Therefore, a convergence of broader scientific fields such as chemistry, materials, and biology is urgently needed to induce a distinct bone tissue regeneration mechanism. CONCLUSION: This review provides an overview of calcium- and/or phosphorus-based inorganic properties and processes combined with organics that can be regarded as matrices of these minerals, namely collagen molecules and collagen fibrils. Furthermore, we discuss how this strategy can be applied to future bone tissue regenerative medicine in combination with other academic perspectives.

18.
Nano Converg ; 9(1): 47, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214916

RESUMO

Bone healing involves complex processes including inflammation, induction, and remodeling. In this context, anti-inflammatory and osteoconductive multi-functional nanoparticles have attracted considerable attention for application in improved bone tissue regeneration. In particular, nanoparticles that promote suppression of inflammatory response after injury and direction of desirable tissue regeneration events are of immense interest to researchers. We herein report a one-step method to prepare multi-functional nanoparticles using tannic acid (TA) and simulated body fluid (SBF) containing multiple mineral ions. Mineral-tannic acid nanoparticles (mTNs) were rapidly fabricated in 10 min, and their size (around 250-350 nm) and chemical composition were controlled through the TA concentration. In vitro analysis using human adipose derived stem cells (hADSCs) showed that mTNs effectively scavenged reactive oxygen species (ROS) and enhanced osteogenesis of hADSCs by inducing secretion of alkaline phosphatase. mTNs also increased osteogenic marker gene expression even in the presence of ROS, which can generally arrest osteogenesis (OPN: 1.74, RUNX2: 1.90, OCN: 1.47-fold changes relative to cells not treated with mTNs). In vivo analysis using a mouse peritonitis model revealed that mTNs showed anti-inflammatory effects by decreasing levels of pro-inflammatory cytokines in blood (IL-6: 73 ± 4, TNF-α: 42 ± 2%) and peritoneal fluid (IL-6: 78 ± 2, TNF-α: 21 ± 6%). We believe that this one-step method for fabrication of multi-functional nanoparticles has considerable potential in tissue engineering approaches that require control of complex microenvironments, as required for tissue regeneration.

19.
J Mater Sci Mater Med ; 22(2): 349-55, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21222142

RESUMO

Porous spherical hydroxyapatite (HAp) granules, which are not only can be used for bone void filler, but also drug delivery systems, were prepared using a liquid nitrogen method. Various pore and channel structures of spherical granules were obtained by adjusting the ratio of water to HAp powder and the amount of sodium chloride (NaCl). By using the water to powder ratio at 2.0 ml/g and the amount of NaCl at 15 wt% by powder, the spherical granules have optimal pore volume, micro-channel structure and strength to handle as well as the ability to work as a drug delivery system. When the NaCl content was 15 wt%, the micro-channel structure was changed, but the pore volume was maintained. For the drug release test, dexamathasone (Dex) was loaded as a model drug on the prepared HAp granules by the immersion method, and the drug release behavior was curved by a UV/vis spectrophotometer. As a result, different drug release behavior was observed according to micro-channel structural differences. Therefore, it was concluded that the NACl could be applied as the pore and micro-channel structure control agent. Porous spherical HAp granules, which were fabricated by a liquid nitrogen method, show potential as bone void filler with the ability of controlled drug release.


Assuntos
Regeneração Óssea , Durapatita/química , Substitutos Ósseos/química , Osso e Ossos/metabolismo , Dexametasona/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Humanos , Microscopia Eletrônica de Varredura/métodos , Nanotecnologia/métodos , Porosidade , Pós , Cloreto de Sódio/química , Espectrofotometria Ultravioleta/métodos
20.
J Nanosci Nanotechnol ; 21(7): 3950-3954, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33715723

RESUMO

In the context of biology and medicine, nanotechnology encompasses the materials, devices, and systems whose structure and function are relevant for small length scales, from nanometers through microns. The purpose of this study was to compare the microstructures and resultant biocompatibility of three commercially available soft milled cobalt-chromium (Co-Cr) alloys (Ceramill Sintron, CS; Sintermetall, SML; and Soft Metal, SM). Disc-shaped specimens were prepared by milling the soft blanks and subsequent post-sintering. The crystal and microstructures of the three different alloys were studied using optical microscopy, X-ray diffractometry (XRD), energy dispersive X-ray spectroscopy, and electron backscatter diffraction. The amounts of Co, Cr, and molybdenum (Mo) ions released from the alloys were evaluated using inductively coupled plasma-mass spectroscopy. The effect of ion release on the viability of L929 mouse fibroblasts was evaluated by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The SML alloy showed a finer grain size (approx. 5 µm) and a larger pore size (approx. 5 µm) than the CS and SM alloys, and its XRD pattern exhibited a slightly higher ε phase peak intensity than that of the γ phase. In the CS and SML alloys, the average crystallite sizes of the nano-sized Cr23C6 carbide were 21.6 and 19.3 nm, respectively. The SML alloy showed higher concentrations of Cr and Mo in the grain boundaries than the other two alloys. The SML alloy showed significantly higher Co and Mo ion releases (p < 0.001) and significantly lower cell viability (p < 0.05) than the CS and SM alloys. The combined results of this in vitro study suggest that the three soft milled Co-Cr alloys had different crystal and microstructures and, as a result, different levels of in vitro biocompatibility.


Assuntos
Ligas de Cromo , Molibdênio , Ligas/toxicidade , Animais , Cromo/toxicidade , Cobalto/toxicidade , Ligas Dentárias , Teste de Materiais , Camundongos , Molibdênio/toxicidade , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA