Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 12(5): 3097-3107, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35425305

RESUMO

The selective recovery of Gd(iii) from wastewater is very meaningful for the prospective development of economics and the environment. To overcome disadvantages of poor adsorption capacity, low selectivity and complex preparation process in conventional adsorbents, herein a new ionic imprinted carboxymethyl chitosan (CMC) sponge functionalized by hyperbranched polyethyleneimine (PEI) with a 3D network structure (PEI-CMC-IIS) was successfully prepared and applied in the selective adsorption of Gd(iii). The PEI-CMC-IIS is endowed with lots of amino groups due to the combination of biomass CMC with highly branched PEI, which is helpful for the adsorption of Gd(iii). The imprinting sites are located at the surface of channels in PEI-CMC-IIS, which can achieve the adsorption specificity to Gd(iii) and improve adsorption capacity. It is found that the maximum adsorption capacity of PEI-CMC-IIS is 38.64 mg g-1 at pH = 7. Meanwhile, the selectivity tests suggest that the PEI-CMC-IIS presents preferential adsorption for Gd(iii) with a distribution coefficient of 437.5 mL g-1. Furthermore, the PEI-CMC-IIS displays excellent reusing and regeneration ability. Our findings will bring about potential application in fabrication of other high-efficiency adsorbents for selective adsorption of Gd(iii).

2.
J Hazard Mater ; 436: 129141, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35594677

RESUMO

Photo-Fenton degradation of pollutants in wastewater involving hydrogen peroxide (H2O2) and Fe2+ ions to produce hydroxyl radicals (·OH) with high oxidative activity is an ideal and feasible choice in advanced oxidation processes (AOPs). However, the photo-Fenton degradation application is limited by the range of acidic pH and the external introduction of H2O2 and Fe2+ ions. Herein, a self-sufficient photo-Fenton system was developed by coupled ultrathin porous g-C3N4 (UPCN) nanosheets that spontaneously produce H2O2 with amorphous FeOOH quantum dots (QDs) via in-situ deposition method for efficient photo-Fenton degradation of oxytetracycline (OTC) under natural pH condition. The enhancement of photocatalytic degradation activity comes from the synergistic effect of amorphous FeOOH QDs and UPCN nanosheets as follows: on the one hand, the formation of photo-Fenton system combining in-situ generation H2O2 of UPCN with amorphous FeOOH QDs can better boost photocatalytic activity for degrading OTC solution in natural pH under light illumination; on the other hand, the ultrathin porous structure of UPCN can better promote the rapid transfer and dispersion of photo-generated electrons from UPCN to amorphous FeOOH QDs and then Fe3+ is reduced to Fe2+ to participate in the Fenton catalytic reaction.


Assuntos
Oxitetraciclina , Pontos Quânticos , Catálise , Peróxido de Hidrogênio/química , Ferro/química , Oxirredução , Porosidade
3.
ACS Appl Mater Interfaces ; 10(24): 20521-20529, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29856913

RESUMO

Graphitic carbon nitride (g-C3N4) with layered structure represents one of the most promising metal-free photocatalysts. As yet, the direct one-step synthesis of ultrathin g-C3N4 nanosheets remains a challenge. Here, few-layered holey g-C3N4 nanosheets (CNS) were fabricated by simply introducing a piece of nickel foam over the precursors during the heating process. The as-prepared CNS with unique structural advantages exhibited superior photocatalytic water splitting activity (1871.09 µmol h-1 g-1) than bulk g-C3N4 (BCN) under visible light (λ > 420 nm) (≈31 fold). Its outstanding photocatalytic performance originated from the high specific surface area (240.34 m2 g-1) and mesoporous structure, which endows CNS with more active sites, efficient exciton dissociation, and prolonged charge carrier lifetime. Moreover, the obvious upshift of the conduction band leads to a larger thermodynamic driving force for photocatalytic proton reduction. This methodology not only had the advantages for the direct and green synthesis of g-C3N4 nanosheets but also paved a new avenue to modify molecular structure and textural of g-C3N4 for advanced applications.

4.
Nanoscale ; 9(37): 14103-14110, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28901369

RESUMO

Graphitic carbon nitride (GCN) nanosheets with unique physicochemical properties have received increasing attention in the area of photocatalysis, yet tunable thickness for the straightforward production of this graphite-like two-dimensional (2D) nanomaterial remains a challenge. In this work, GCN nanosheets with different thicknesses were firstly prepared by a direct calcination of melamine supramolecular aggregates (MSA) obtained from a hydrochloric acid (HCl)-induced hydrothermal assembly approach. The resultant nanosheets over nanometer scale thickness could be precisely controlled via simply adjusting the HCl concentration. Compared to the bulk GCN (BGCN), the thinner nanosheets possessed a high specific surface area, a large electronic-band structure, and fast charge separation ability. The thinnest nanosheets with a thickness of approximately 4 nm exhibited excellent visible-light-driven photocatalytic water splitting performance in hydrogen evolution (524 µmol h-1 g-1), which is over 9-fold higher than the BGCN powder. This work provides a thickness-dependent strategy for the preparation of metal-free GCN nanosheets and develops a promising 2D photocatalyst for application in solar energy conversion.

5.
Dalton Trans ; 46(37): 12675-12682, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28914294

RESUMO

The development of Z-scheme heterojunction photocatalytic systems is a promising strategy to produce hydrogen and for pollutant degradation. In this study, the direct Z-scheme CdS/Bi4V2O11 photocatalysts were synthesized via a two-step solvothermal method. The photocatalytic properties of the samples were measured by ciprofloxacin (CIP), tetracycline (TC) and rhodamine B (RhB) degradation under visible light (λ > 420 nm). In addition, a probable reaction mechanism for organic pollutants over CdS/Bi4V2O11 photocatalysts was also proposed based on the analysis of electron spin resonance (ESR) and active species capture experiments. The enhanced photocatalytic activity of CdS/Bi4V2O11 photocatalysts was ascribed to the efficient electron transfer of direct Z-scheme CdS/Bi4V2O11 photocatalysts.

6.
Sheng Li Xue Bao ; 58(3): 255-61, 2006 Jun 25.
Artigo em Zh | MEDLINE | ID: mdl-16786110

RESUMO

To investigate the roles of adenomatous polyposis coli (APC) protein and glycogen synthase kinase 3beta (GSK3beta) of smoking murine model in the repair of the injured airway epithelial cells (AECs) in different stages, 30 male Kun-Ming mice were randomly divided into two groups, the control group and the smoking group. There were 24 mice in smoking group, and 6 animals were separately killed at the end of the 1st, 4th, 8th and 12th week after smoking. Then the following tests were undertaken: (1) HE staining of lung section to observe the morphological changes of the bronchi in the smoking mice. (2) Immunohistochemical staining of APC protein and GSK3beta in the AECs. (3) Western blot was used to detect the levels of APC protein, GSK3beta and phosphorated GSK3beta (p-GSK3beta) in pulmonary tissue. (4) Observing the localizations of APC protein and GSK3beta in the AECs by immunofluorescence technique. The results showed: (1) AECs showed changes of predominant injury (1-, 4-week), repair (8-week) and reinjury (12-week) along with smoking time prolonged. The experimental results indicated that the model of smoking mice was duplicated successfully. (2) Immunohistochemical results showed that the expression of APC protein in the AECs increased after 1-week smoking (0.458 +/- 0.062 vs 0.399 +/- 0.060, P< 0.05 vs control), but was significantly decreased at the end of the 4th week (0.339+/- 0.056, P<0.01 vs control) and increased at the end of the 8th and 12th week (0.387 +/- 0.041, 0.378 +/- 0.037, P<0.05 vs 4-week). The expression of GSK3beta in the AECs of smoking mice obviously decreased (P<0.01 or P<0.05 vs control). (3) Western blot showed that the expressions of APC protein and GSK3beta in lung tissue were consistent with the results of immunohistochemistry; and the levels of p-GSK3beta in all smoking models were higher than that in control. (4) The results of immunofluorescence showed that APC protein was localized mainly near the regions of epithelial cell membrane at the end of the 1st and 8th week after smoking, which were dissimilar with the localization in control, and this change was not seen in the location of GSK3beta. Taken together, these results demonstrate that the expressions and localizations of APC protein, GSK3beta and the activity of GSK3beta are dynamically changed in the AECs with experimental smoking injury at different phases, suggesting that APC protein and GSK3beta may be involved in the regulation of migration and proliferation of AECs, and play an important role in the process of repair of airway epithelium injury.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Brônquios/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Pulmão/fisiologia , Fumaça/efeitos adversos , Animais , Brônquios/patologia , Feminino , Glicogênio Sintase Quinase 3 beta , Pulmão/patologia , Masculino , Camundongos , Regeneração , Nicotiana/efeitos adversos
7.
J Colloid Interface Sci ; 455: 125-33, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26057945

RESUMO

A novel ionic liquid modified copolymer hydrogel (PAMDA) was successfully synthesized by a simple water solution copolymerization using acrylamide (AM), dimethyldiallylammonium chloride (DADMAC) and ionic liquid (1-allyl-3-methylimidazolium chloride; [Amim]Cl) as copolymerization monomers. The structure and morphology of as-prepared copolymer hydrogel PAMDA were confirmed by Fourier transform infrared (FT-IR), field-emission scanning electron microscope (FE-SEM) and thermogravimetric analysis (TG). The copolymer hydrogel was applied as a novel adsorbent for the rapid removal of Cr (VI) from aqueous solution. The effects of several parameters such as the content of ionic liquid [Amim]Cl, solution pH, contact time, adsorbent dosage and initial Cr (VI) concentration on the adsorption were also investigated. The modification of [Amim]Cl significantly enhanced Cr (VI) adsorption. The adsorption equilibrium data fitted with Langmuir isotherm model better than Freundlich isotherm model. The maximum adsorption capacity for Cr (VI) ions was 74.5 mg L(-1) at 323 K based on Langmuir isotherm model. The removal rate could reach 95.9% within 10 min at 323 K and the adsorption process of Cr (VI) on PAMDA was well described by the pseudo-second-order kinetic model. The activation energy of adsorption was further investigated and found to be 1.094 kJ mol(-1), indicating the adsorption of Cr (VI) onto PAMDA was physisorption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA