Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mar Pollut Bull ; 189: 114759, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36857993

RESUMO

This study provided new data on shell mineralogy in 23 Arctic bivalve species. The majority of examined species had purely aragonitic shells. Furthermore, we measured concentrations of Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Sr and Zn in 542 shells representing 25 Arctic bivalve species. Species-related differences in concentrations of specific elements were significant and occurred regardless of locations and water depths. This observation implies the dominance of biological processes regulating elemental uptake into the skeleton over factors related to the variability of abiotic environmental conditions. Analysis of the present study and literature data revealed that the highest concentrations of metals were observed in bivalves collected in the temperate zone, with intermediate levels in the tropics and the lowest levels in polar regions. This trend was ascribed mainly to the presence of higher anthropogenic pressure at temperate latitudes being a potential source of human-mediated metal pollution.


Assuntos
Bivalves , Oligoelementos , Animais , Humanos , Metais/análise , Carbonato de Cálcio/análise , Regiões Árticas , Monitoramento Ambiental , Oligoelementos/análise
2.
Fish Physiol Biochem ; 38(5): 1393-407, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22437369

RESUMO

Oocyte and liver histomorphology of the daubed shanny (Leptoclinus maculatus) from Isfjorden and Kongsfjorden in Svalbard were investigated during three Arctic seasons: summer (July), autumn (October) and winter (April). Three oocyte developmental phases were observed: primary growth phase, secondary growth phase and maturation phase. We observed four different developmental stages: (1) perinucleolus stage with cortical alveolus formation, (2) lipid droplets formation, (3) vitellogenesis stage and (4) maturation. Late maturation stage of oocytes in the ovaries was from the autumn season. Females accumulated lipids in liver (up to 35.2 % dw) and deposited large amounts of lipids into gonads (up to 52.2 % dw) during maturation. Lipid classes in female gonads changed seasonally, with relative increase in cholesterol during summer and depletion of storage lipids (triacylglycerols and wax esters/cholesterol esters) during the winter. Lipid composition in liver changed during oocyte development and spawning, as neutral lipids were transferred to developing oocytes during summer to autumn. During winter, storage lipids were depleted during starvation. Based on the increase in gonadosomatic index (GSI) with length and observed maturation stages, females seem to mature at a length of about 125-130 mm. The GSI and hepatosomatic index of large females sampled in autumn (September-October) were significantly higher than for females in late winter (April) and spring (May). These results indicate that spawning takes place during winter in Isfjorden and that energy reserves stored in the liver are utilized by females during gonadal development and reproduction.


Assuntos
Lipídeos/química , Fígado/química , Oogênese/fisiologia , Ovário/química , Animais , Regiões Árticas , Feminino , Oceanos e Mares , Perciformes , Estações do Ano , Poluição da Água
3.
Mar Environ Res ; 174: 105545, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34999412

RESUMO

Climate models predict extended periods with sea-ice free Arctic waters during the next decade, which will allow more shipping activity and easier access to petroleum resources. Increased industrial activities raise concerns about the biological effects of accidental petroleum release on key species of the Arctic marine ecosystem, such as the polar cod (Boreogadus saida). This study examines effects on physiological traits related to the fitness of adult polar cod, such as growth, survival, and lipid parameters. Fish were exposed to environmentally-relevant crude oil doses through their diet over an 8-month period, concurrent with reproductive development. In liver tissue, lipid class composition differed between treatments while in gonad tissue, lipid class composition varied between sexes, but not treatments. Crude oil did not affect growth and survival, which indicated that polar cod were relatively robust to dietary crude oil exposure at doses tested (0.11-1.14 µg crude oil/g fish/day) in this study.


Assuntos
Petróleo , Poluentes Químicos da Água , Animais , Regiões Árticas , Biomarcadores , Citocromo P-450 CYP1A1 , Ecossistema , Petróleo/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Sci Rep ; 11(1): 22109, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764330

RESUMO

In colonially breeding marine predators, individual movements and colonial segregation are influenced by seascape characteristics. Tidewater glacier fronts are important features of the Arctic seascape and are often described as foraging hotspots. Albeit their documented importance for wildlife, little is known about their structuring effect on Arctic predator movements and space use. In this study, we tested the hypothesis that tidewater glacier fronts can influence marine bird foraging patterns and drive spatial segregation among adjacent colonies. We analysed movements of black-legged kittiwakes (Rissa tridactyla) in a glacial fjord by tracking breeding individuals from five colonies. Although breeding kittiwakes were observed to travel up to ca. 280 km from the colony, individuals were more likely to use glacier fronts located closer to their colony and rarely used glacier fronts located farther away than 18 km. Such variation in the use of glacier fronts created fine-scale spatial segregation among the four closest (ca. 7 km distance on average) kittiwake colonies. Overall, our results support the hypothesis that spatially predictable foraging patches like glacier fronts can have strong structuring effects on predator movements and can modulate the magnitude of intercolonial spatial segregation in central-place foragers.


Assuntos
Aves/fisiologia , Charadriiformes/fisiologia , Animais , Regiões Árticas , Ecossistema , Estuários , Comportamento Alimentar/fisiologia , Camada de Gelo , Estações do Ano
5.
Mar Environ Res ; 166: 105262, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33513484

RESUMO

The polar cod (Boreogadus saida) has a circumpolar distribution and is the most abundant planktivorous fish in the Arctic. Declining sea-ice coverage impacts polar cod directly and also facilitates expansion of human activities in the region leading to increasing anthropogenic pressures on biota. Here we summarize current data and knowledge on polar cod from the Russian sector of the Barents Sea and discuss knowledge needs for the management of polar cod under changing environmental conditions and anthropogenic impacts. We review 36 Russian historical (1935 - 2020) sources of data and knowledge largely unknown to western researchers, in addition to sources already published in the English language. This effort allowed for digitalization and visualization of 69 separate datasets on polar cod ecology, including maturation, fertility, feeding intensity, diet, lipid content, length-weight relationships and seasonal variation in larval size. Our review suggests that polar cod abundances are particularly large in the eastern Barents Sea and adjacent waters. Here, we identify and discuss key knowledge gaps. The review of polar cod in the eastern Barents Sea revealed 1) major variation in the timing and area of polar cod spawning, 2) uncertainty as to what degree the polar cod is dependent on sea ice, 3) deficient knowledge of juvenile (e.g., 0-group) distributions, particularly in the north-eastern Barents Sea, 4) deficient knowledge of the species' genetic structure and spatio-temporal distributions, and 5) insufficient understanding as to whether ongoing environmental change may induce phenological changes affecting the availability of potential food items for polar cod larvae and their match in space and time. Filling these knowledge gaps would provide an important step towards the reliable knowledge base needed in order to perform well-founded management and impact assessment under environmental changes and increasing anthropogenic impacts.


Assuntos
Gadiformes , Animais , Regiões Árticas , Ecologia , Humanos , Camada de Gelo , Federação Russa
6.
Mar Environ Res ; 162: 105166, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33049544

RESUMO

In the Arctic, seasonal patterns in seawater biochemical conditions are shaped by physical, chemical, and biological processes related to the alternation of seasons, i.e. winter polar night and summer midnight sun. In summertime, CO2 concentration is driven by photosynthetic activity of autotrophs which raises seawater pH and carbonate saturation state (Ω). In addition, restriction of photosynthetic activity to the euphotic zone and establishment of seasonal stratification often leads to depth gradients in pH and Ω. In winter, however, severely reduced primary production along with respiration processes lead to higher CO2 concentrations which consequently decrease seawater pH and Ω. Many calcifying invertebrates incorporate other metals, in addition to calcium, into their skeletons, with potential consequences for stability of the mineral matrix and vulnerability to abrasion of predators. We tested whether changes in seawater chemistry due to light-driven activities of marine biota can influence the uptake of Mg into calcified skeletons of Arctic Bryozoa, a dominant faunal group in polar hard-bottom habitats. Our results indicate no clear differences between summer and winter levels of skeletal MgCO3 in five bryozoan species despite differences in Ω between these two seasons. Furthermore, we could not detect any depth-related differences in MgCO3 content in skeletons of selected bryozoans. These results may indicate that Arctic bryozoans are able to control MgCO3 skeletal concentrations biologically. Yet recorded spatial variability in MgCO3 content in skeletons from stations exhibiting different seawater parameters suggests that environmental factors can also, to some extent, shape the skeletal chemistry of Arctic bryozoans.


Assuntos
Briozoários , Animais , Regiões Árticas , Estações do Ano , Água do Mar , Esqueleto
7.
Mar Environ Res ; 162: 105176, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33096461

RESUMO

Climate change is leading to alterations in salinity and carbonate chemistry in arctic/sub-arctic marine ecosystems. We examined three nominal populations of the circumpolar arctic/subarctic amphipod, Gammarus setosus, along a salinity gradient in the Kongsfjorden-Krossfjorden area of Svalbard. Field and laboratory experiments assessed physiological (haemolymph osmolality and gill Na+/K+-ATPase activity, NKA) and energetic responses (metabolic rates, MO2, and Cellular Energy Allocation, CEA). In the field, all populations had similar osmregulatory capacities and MO2, but lower-salinity populations had lower CEA. Reduced salinity (S = 23) and elevated pCO2 (~1000 µatm) in the laboratory for one month increased gill NKA activities and reduced CEA in all populations, but increased MO2 in the higher-salinity population. Elevated pCO2 did not interact with salinity and had no effect on NKA activities or CEA, but reduced MO2 in all populations. Reduced CEA in lower-rather than higher-salinity populations may have longer term effects on other energy demanding processes (growth and reproduction).


Assuntos
Anfípodes , Salinidade , Animais , Regiões Árticas , Ecossistema , Brânquias , Concentração de Íons de Hidrogênio , Água do Mar , Svalbard
8.
J Plankton Res ; 42(1): 73-86, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32025067

RESUMO

Apherusa glacialis is a common, sea ice-associated amphipod found throughout the Arctic Ocean and has long been considered permanently associated with the sea ice habitat. However, pelagic occurrences of A. glacialis have also been reported. It was recently suggested that A. glacialis overwinters at depth within the Atlantic-water inflow near Svalbard, to avoid being exported out of the Arctic Ocean through the Fram Strait. This study collated pelagic occurrence records over a 71-year period and found that A. glacialis was consistently found away from its presumed sea ice habitat on a pan-Arctic scale, in different depths and water masses. In the Svalbard region, A. glacialis was found in Atlantic Water both in winter and summer. Additionally, we analyzed A. glacialis size distributions throughout the year, collected mostly from sea ice, in order to elucidate potential life cycle strategies. The majority of young-of-the-year A. glacialis was found in the sea ice habitat during spring, supporting previous findings. Data on size distributions and sex ratios suggest a semelparous lifestyle. A synchronous seasonal vertical migration was not evident, but our data imply a more complex life history than previously assumed. We provide evidence that A. glacialis can no longer be regarded as an autochthonous sympagic species.

9.
Sci Rep ; 9(1): 9536, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266996

RESUMO

In the Arctic Ocean ice algae constitute a key ecosystem component and the ice algal spring bloom a critical event in the annual production cycle. The bulk of ice algal biomass is usually found in the bottom few cm of the sea ice and dominated by pennate diatoms attached to the ice matrix. Here we report a red tide of the phototrophic ciliate Mesodinium rubrum located at the ice-water interface of newly formed pack ice of the high Arctic in early spring. These planktonic ciliates are not able to attach to the ice. Based on observations and theory of fluid dynamics, we propose that convection caused by brine rejection in growing sea ice enabled M. rubrum to bloom at the ice-water interface despite the relative flow between water and ice. We argue that red tides of M. rubrum are more likely to occur under the thinning Arctic sea ice regime.

10.
Ecol Evol ; 8(4): 2350-2364, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468049

RESUMO

Arctic sea ice provides microhabitats for biota that inhabit the liquid-filled network of brine channels and the ice-water interface. We used meta-analysis of 23 published and unpublished datasets comprising 721 ice cores to synthesize the variability in composition and abundance of sea ice meiofauna at spatial scales ranging from within a single ice core to pan-Arctic and seasonal scales. Two-thirds of meiofauna individuals occurred in the bottom 10 cm of the ice. Locally, replicate cores taken within meters of each other were broadly similar in meiofauna composition and abundance, while those a few km apart varied more; 75% of variation was explained by station. At the regional scale (Bering Sea first-year ice), meiofauna abundance varied over two orders of magnitude. At the pan-Arctic scale, the same phyla were found across the region, with taxa that have resting stages or tolerance to extreme conditions (e.g., nematodes and rotifers) dominating abundances. Meroplankton, however, was restricted to nearshore locations and landfast sea ice. Light availability, ice thickness, and distance from land were significant predictor variables for community composition on different scales. On a seasonal scale, abundances varied broadly for all taxa and in relation to the annual ice algal bloom cycle in both landfast and pack ice. Documentation of ice biota composition, abundance, and natural variability is critical for evaluating responses to decline in Arctic sea ice. Consistent methodology and protocols must be established for comparability of meiofauna monitoring across the Arctic. We recommend to (1) increase taxonomic resolution of sea ice meiofauna, (2) focus sampling on times of peak abundance when seasonal sampling is impossible, (3) include the bottom 30 cm of ice cores rather than only bottom 10 cm, (4) preserve specimens for molecular analysis to improve taxonomic resolution, and (5) formulate a trait-based framework that relates to ecosystem functioning.

11.
Sci Rep ; 8(1): 1178, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29352216

RESUMO

Climate warming is rapidly altering marine ecosystems towards a more temperate state on the European side of the Arctic. However, this "Atlantification" has rarely been confirmed, as long-term datasets on Arctic marine organisms are scarce. We present a 19-year time series (1982-2016) of diet samples from black-legged kittiwakes as an indicator of the changes in a high Arctic marine ecosystem (Kongsfjorden, Svalbard). Our results highlight a shift from Arctic prey dominance until 2006 to a more mixed diet with high contribution of Atlantic fishes. Capelin, an Atlantic species, dominated the diet composition in 2007, marking a shift in the food web. The occurrence of polar cod, a key Arctic fish species, positively correlated with sea ice index, whereas Atlantic species demonstrated the opposite correlation indicating that the diet shift was likely connected with recent climate warming. Kittiwakes, which gather available fish and zooplankton near the sea surface to feed their chicks, can act as messengers of ecosystem change. Changes in their diet reveal that the Kongsfjord system has drifted in an Atlantic direction over the last decade.

12.
Environ Pollut ; 148(1): 360-71, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17258363

RESUMO

The present study reports concentrations and biomagnification potential of per- and polyfluorinated alkyl substances (PFAS) in species from the Barents Sea food web. The examined species included sea ice amphipod (Gammarus wilkitzkii), polar cod (Boreogadus saida), black guillemot (Cepphus grylle) and glaucous gull (Larus hyperboreus). These were analyzed for PFAS, polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and polybrominated diphenyl ethers (PBDEs). Perfluorooctane sulfonate (PFOS) was the predominant of the detected PFAS. Trophic levels and food web transfer of PFAS were determined using stable nitrogen isotopes (delta(15)N). No correlation was found between PFOS concentrations and trophic level within species. However, a non-linear relationship was established when the entire food web was analyzed. Biomagnification factors displayed values >1 for perfluorohexane sulfonate (PFHxS), perfluorononanoic acid (PFNA), PFOS and SigmaPFAS(7). Multivariate analyses showed that the degree of trophic transfer of PFAS is similar to that of PCB, DDT and PBDE, despite their accumulation through different pathways.


Assuntos
Ecossistema , Poluentes Ambientais/metabolismo , Cadeia Alimentar , Hidrocarbonetos Fluorados/metabolismo , Anfípodes/metabolismo , Animais , Regiões Árticas , Aves/metabolismo , DDT/análise , DDT/metabolismo , Peixes/metabolismo , Éteres Difenil Halogenados , Oceanos e Mares , Éteres Fenílicos/análise , Éteres Fenílicos/metabolismo , Bifenil Polibromatos/análise , Bifenil Polibromatos/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo
13.
Ecol Evol ; 7(18): 7145-7160, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28944006

RESUMO

Ocean acidification is the increase in seawater pCO 2 due to the uptake of atmospheric anthropogenic CO 2, with the largest changes predicted to occur in the Arctic seas. For some marine organisms, this change in pCO 2, and associated decrease in pH, represents a climate change-related stressor. In this study, we investigated the gene expression patterns of nauplii of the Arctic copepod Calanus glacialis cultured at low pH levels. We have previously shown that organismal-level performance (development, growth, respiration) of C. glacialis nauplii is unaffected by low pH. Here, we investigated the molecular-level response to lowered pH in order to elucidate the physiological processes involved in this tolerance. Nauplii from wild-caught C. glacialis were cultured at four pH levels (8.05, 7.9, 7.7, 7.5). At stage N6, mRNA was extracted and sequenced using RNA-seq. The physiological functionality of the proteins identified was categorized using Gene Ontology and KEGG pathways. We found that the expression of 151 contigs varied significantly with pH on a continuous scale (93% downregulated with decreasing pH). Gene set enrichment analysis revealed that, of the processes downregulated, many were components of the universal cellular stress response, including DNA repair, redox regulation, protein folding, and proteolysis. Sodium:proton antiporters were among the processes significantly upregulated, indicating that these ion pumps were involved in maintaining cellular pH homeostasis. C. glacialis significantly alters its gene expression at low pH, although they maintain normal larval development. Understanding what confers tolerance to some species will support our ability to predict the effects of future ocean acidification on marine organisms.

14.
Sci Rep ; 7: 40850, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102329

RESUMO

The Arctic icescape is rapidly transforming from a thicker multiyear ice cover to a thinner and largely seasonal first-year ice cover with significant consequences for Arctic primary production. One critical challenge is to understand how productivity will change within the next decades. Recent studies have reported extensive phytoplankton blooms beneath ponded sea ice during summer, indicating that satellite-based Arctic annual primary production estimates may be significantly underestimated. Here we present a unique time-series of a phytoplankton spring bloom observed beneath snow-covered Arctic pack ice. The bloom, dominated by the haptophyte algae Phaeocystis pouchetii, caused near depletion of the surface nitrate inventory and a decline in dissolved inorganic carbon by 16 ± 6 g C m-2. Ocean circulation characteristics in the area indicated that the bloom developed in situ despite the snow-covered sea ice. Leads in the dynamic ice cover provided added sunlight necessary to initiate and sustain the bloom. Phytoplankton blooms beneath snow-covered ice might become more common and widespread in the future Arctic Ocean with frequent lead formation due to thinner and more dynamic sea ice despite projected increases in high-Arctic snowfall. This could alter productivity, marine food webs and carbon sequestration in the Arctic Ocean.


Assuntos
Fitoplâncton/crescimento & desenvolvimento , Regiões Árticas , Compostos Inorgânicos de Carbono/análise , Eutrofização , Haptófitas/crescimento & desenvolvimento , Camada de Gelo , Nitratos/análise , Imagens de Satélites , Estações do Ano
15.
Environ Toxicol Chem ; 25(9): 2502-11, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16986806

RESUMO

Concentrations of brominated flame retardants (BFRs), including polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD), were investigated in an arctic marine food chain consisting of four invertebrate species: polar cod (Boreogadus saida), ringed seals (Pusa hispida), and polar bears (Ursus maritimus). The most abundant BFR, brominated diphenyl ether (BDE)-47, was found in detectable concentrations even in zooplankton, the lowest trophic level examined in this study. Most of the investigated BFRs biomagnified as function of tropic level in the food chain. A noticeable exception occurred at the highest trophic level, the polar bear, in which only BDE-153 was found to increase from its main prey, the ringed seal, indicating that polar bears appear to be able to metabolize and biodegrade most BFRs. In contrast, lower-brominated PBDEs, particularly BDE-47, showed clear signs of bioaccumulation in zooplankton, polar cod, and ringed seals. We suggest that this discrepancy in the fate of BFRs among the different species may be related to greater induction of oxidative detoxification activities in the polar bear. Absorption and debromination rates may be more important for bioaccumulation rates of BFRs in zooplankton, polar cod, and ringed seals. Lipid weight-based concentrations (LWCs) and whole body-based concentrations (WBCs) of BFRs were used to assess biomagnification factors (BMFs). Whole-body concentrations gave the most realistic BMFs, as BMFs derived from LWCs seem to be confounded by the large variability in lipid content of tissues from the investigated species. This study demonstrates that PBDEs and HBCD have reached measurable concentrations even in the lower trophic levels (invertebrates and fish) in the Arctic and biomagnifies in the polar bear food chain.


Assuntos
Retardadores de Chama/análise , Cadeia Alimentar , Hidrocarbonetos Bromados/análise , Bifenil Polibromatos/análise , Ursidae/fisiologia , Animais , Gadiformes/metabolismo , Hidrocarbonetos Bromados/metabolismo , Invertebrados/química , Noruega , Phoca/metabolismo , Bifenil Polibromatos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluição Química da Água
16.
Environ Pollut ; 134(3): 397-409, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15620585

RESUMO

Four seabird species and their prey (zooplankton or fish) were collected in the Barents Sea to determine how dietary exposure, cytochrome P450 (CYP) enzyme activities and sex influenced their hepatic PCB concentrations and accumulation patterns. Five males and five females from each seabird species (little auk (Alle alle), Brunnich's guillemot (Uria lomvia), black guillemot (Cepphus grylle) and black-legged kittiwake (Rissa tridactyla)) were analysed. PCB concentrations could not be explained directly by carbon source (delta13C) or trophic position (delta15N), but by a combination of dietary parameters (delta13C, delta15N, migratory pattern, age) and contaminant metabolism. Contrary to previous studies, the PCB pattern differed among seabirds, with a higher proportion of persistent congeners (% of PCB-153, RPCB-153) in black-legged kittiwake than in auks. The PCB pattern also differed among auks, with little auk as the most efficient biotransformer (highest RPCB-153 values of persistent congeners). Based on high RPCB-153 values, Brunnich's guillemot poorly metabolised ortho-meta-unsubstituted congeners, whereas black guillemot poorly metabolised meta-para unsubstituted congeners. Species-specific differences in PCB biotransformation were confirmed by metabolic indices, where PCB patterns in seabirds were adjusted for PCB pattern in prey. The relative contribution of ortho-meta-unsubstituted congeners to SigmaPCBs decreased with increasing EROD activity. There were no differences in PCB concentrations, PCB patterns or cytochrome P450 enzyme activities between males and females. CYP P450 activities (CYP1A- and CYP2B/3A-like: EROD and testosterone 6beta-hydroxylation, respectively) were low and did not correlate with concentrations of non- or mono-ortho Cl-substituted PCBs (NO- and MO-PCBs), or with total toxic equivalent concentrations (TEQs) for dioxin-like effects of NO- and MO-PCBs.


Assuntos
Aves/metabolismo , Dieta , Poluentes Ambientais/farmacocinética , Bifenilos Policlorados/farmacocinética , Envelhecimento , Animais , Regiões Árticas , Biotransformação , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Peixes , Masculino , Filogenia , Água do Mar , Fatores Sexuais , Zooplâncton
17.
PLoS One ; 8(10): e76599, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204642

RESUMO

During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.


Assuntos
Cianobactérias , Congelamento , Camada de Gelo/microbiologia , Gelo , Água do Mar/microbiologia , Regiões Árticas , Ecossistema , Geografia
18.
PLoS One ; 7(5): e38307, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693616

RESUMO

Changing patterns of sea-ice distribution and extent have measurable effects on polar marine systems. Beyond the obvious impacts of key-habitat loss, it is unclear how such changes will influence ice-associated marine mammals in part because of the logistical difficulties of studying foraging behaviour or other aspects of the ecology of large, mobile animals at sea during the polar winter. This study investigated the diet of pregnant bearded seals (Erignathus barbatus) during three spring breeding periods (2005, 2006 and 2007) with markedly contrasting ice conditions in Svalbard using stable isotopes (δ(13)C and δ(15)N) measured in whiskers collected from their newborn pups. The δ(15)N values in the whiskers of individual seals ranged from 11.95 to 17.45 ‰, spanning almost 2 full trophic levels. Some seals were clearly dietary specialists, despite the species being characterised overall as a generalist predator. This may buffer bearded seal populations from the changes in prey distributions lower in the marine food web which seems to accompany continued changes in temperature and ice cover. Comparisons with isotopic signatures of known prey, suggested that benthic gastropods and decapods were the most common prey. Bayesian isotopic mixing models indicated that diet varied considerably among years. In the year with most fast-ice (2005), the seals had the greatest proportion of pelagic fish and lowest benthic invertebrate content, and during the year with the least ice (2006), the seals ate more benthic invertebrates and less pelagic fish. This suggests that the seals fed further offshore in years with greater ice cover, but moved in to the fjords when ice-cover was minimal, giving them access to different types of prey. Long-term trends of sea ice decline, earlier ice melt, and increased water temperatures in the Arctic are likely to have ecosystem-wide effects, including impacts on the forage bases of pagophilic seals.


Assuntos
Dieta , Camada de Gelo , Parto , Focas Verdadeiras/fisiologia , Animais , Feminino , Cadeia Alimentar , Isótopos , Gravidez , Focas Verdadeiras/anatomia & histologia , Vibrissas/crescimento & desenvolvimento
19.
Environ Pollut ; 161: 134-42, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22230078

RESUMO

Organochlorine compounds (OC) were determined in Arctic bivalves (Mya truncata, Serripes groenlandicus, Hiatella arctica and Chlamys islandica) from Svalbard with regard to differences in geographic location, species and variations related to their size and age. Higher chlorinated polychlorinated biphenyls (PCB 101-PCB 194), chlordanes and α-hexachlorocyclohexane (α-HCH) were consistently detected in the bivalves and PCBs dominated the OC load in the organisms. OC concentrations were highest in Mya truncata and the lowest in Serripes groenlandicus. Species-specific OC levels were likely related to differences in the species' food source, as indicated by the δ(13)C results, rather than size and age. Higher OC concentrations were observed in bivalves from Kongsfjorden compared to the northern sampling locations Liefdefjorden and Sjuøyane. The spatial differences might be related to different water masses influencing Kongsfjorden (Atlantic) and the northern locations (Arctic), with differing phytoplankton bloom situations.


Assuntos
Bivalves/metabolismo , Hidrocarbonetos Clorados/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Monitoramento Ambiental , Svalbard , Poluição Química da Água/estatística & dados numéricos
20.
Mar Pollut Bull ; 60(8): 1336-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20385393

RESUMO

Seasonality of biomarker baseline levels were studied in polar cod (Boreogadus saida), caught in Kongsfjorden, Svalbard, in April, July, September and December, 2006-2007. Physiological parameters (condition factor, gonado- and hepato-somatic indexes, energy reserves, potential metabolic activity and antifreeze activity) in polar cod were used to interpret the seasonality of potential biomarkers. The highest levels of ethoxyresorufin-O-deethylase (EROD) activity occurred concomitantly with the highest potential metabolic activity in July due to e.g. intense feeding. During pre-spawning, EROD showed significant inhibition and gender differences. Hence, its potential use in environmental monitoring should imply gender differentiation at least during this period. Glutathione S-transferase and catalase activities were stable from April to September, but changed in December suggesting a link to low biological activity. Knowledge of the biomarker baseline levels and their seasonal trends in polar cod is essential for a trustworthy interpretation of forthcoming toxicity data and environmental monitoring in the Arctic.


Assuntos
Monitoramento Ambiental , Gadiformes/fisiologia , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Catalase/normas , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/normas , Glutationa Transferase/metabolismo , Glutationa Transferase/normas , Padrões de Referência , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA