RESUMO
Advanced 3D imaging modalities, such as micro-computed tomography (micro-CT), have been incorporated into the high-throughput embryo pipeline of the International Mouse Phenotyping Consortium (IMPC). This project generates large volumes of raw data that cannot be immediately exploited without significant resources of personnel and expertise. Thus, rapid automated annotation is crucial to ensure that 3D imaging data can be integrated with other multi-dimensional phenotyping data. We present an automated computational mouse embryo phenotyping pipeline that harnesses the large amount of wild-type control data available in the IMPC embryo pipeline in order to address issues of low mutant sample number as well as incomplete penetrance and variable expressivity. We also investigate the effect of developmental substage on automated phenotyping results. Designed primarily for developmental biologists, our software performs image pre-processing, registration, statistical analysis and segmentation of embryo images. We also present a novel anatomical E14.5 embryo atlas average and, using it with LAMA, show that we can uncover known and novel dysmorphology from two IMPC knockout lines.
Assuntos
Embrião de Mamíferos/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Animais , Feminino , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/fisiologia , Fenótipo , SoftwareRESUMO
This corrects the article DOI: 10.1038/nature19356.
RESUMO
Approximately one-third of all mammalian genes are essential for life. Phenotypes resulting from knockouts of these genes in mice have provided tremendous insight into gene function and congenital disorders. As part of the International Mouse Phenotyping Consortium effort to generate and phenotypically characterize 5,000 knockout mouse lines, here we identify 410 lethal genes during the production of the first 1,751 unique gene knockouts. Using a standardized phenotyping platform that incorporates high-resolution 3D imaging, we identify phenotypes at multiple time points for previously uncharacterized genes and additional phenotypes for genes with previously reported mutant phenotypes. Unexpectedly, our analysis reveals that incomplete penetrance and variable expressivity are common even on a defined genetic background. In addition, we show that human disease genes are enriched for essential genes, thus providing a dataset that facilitates the prioritization and validation of mutations identified in clinical sequencing efforts.
Assuntos
Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Genes Essenciais/genética , Genes Letais/genética , Mutação/genética , Fenótipo , Animais , Sequência Conservada/genética , Doença , Estudo de Associação Genômica Ampla , Ensaios de Triagem em Larga Escala , Humanos , Imageamento Tridimensional , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Penetrância , Polimorfismo de Nucleotídeo Único/genética , Homologia de SequênciaRESUMO
High-throughput phenotyping is a cornerstone of numerous functional genomics projects. In recent years, imaging screens have become increasingly important in understanding gene-phenotype relationships in studies of cells, tissues and whole organisms. Three-dimensional (3D) imaging has risen to prominence in the field of developmental biology for its ability to capture whole embryo morphology and gene expression, as exemplified by the International Mouse Phenotyping Consortium (IMPC). Large volumes of image data are being acquired by multiple institutions around the world that encompass a range of modalities, proprietary software and metadata. To facilitate robust downstream analysis, images and metadata must be standardized to account for these differences. As an open scientific enterprise, making the data readily accessible is essential so that members of biomedical and clinical research communities can study the images for themselves without the need for highly specialized software or technical expertise. In this article, we present a platform of software tools that facilitate the upload, analysis and dissemination of 3D images for the IMPC. Over 750 reconstructions from 80 embryonic lethal and subviable lines have been captured to date, all of which are openly accessible at mousephenotype.org. Although designed for the IMPC, all software is available under an open-source licence for others to use and develop further. Ongoing developments aim to increase throughput and improve the analysis and dissemination of image data. Furthermore, we aim to ensure that images are searchable so that users can locate relevant images associated with genes, phenotypes or human diseases of interest.
Assuntos
Embrião de Mamíferos/diagnóstico por imagem , Embrião de Mamíferos/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Software , Animais , Automação , Imageamento Tridimensional/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Imagem Molecular/instrumentação , FenótipoRESUMO
Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica.
Assuntos
Transferência Genética Horizontal , Interações Hospedeiro-Parasita/genética , Oomicetos/genética , Saprolegnia/genética , Virulência/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Molecular , Peixes/genética , Peixes/parasitologia , Genoma , Oomicetos/classificação , Oomicetos/patogenicidade , Filogenia , Plantas/parasitologia , Saprolegnia/classificação , Saprolegnia/patogenicidadeRESUMO
Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement. To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population. Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion. Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars. Here we report the sequence of the P. infestans genome, which at approximately 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for approximately 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Assuntos
Genoma/genética , Phytophthora infestans/genética , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Proteínas de Algas/genética , Elementos de DNA Transponíveis/genética , DNA Intergênico/genética , Evolução Molecular , Interações Hospedeiro-Patógeno/genética , Humanos , Irlanda , Dados de Sequência Molecular , Necrose , Fenótipo , Phytophthora infestans/patogenicidade , Doenças das Plantas/imunologia , Solanum tuberosum/imunologia , InaniçãoRESUMO
The asexual multinucleated sporangia of Phytophthora infestans can germinate directly through a germ tube or indirectly by releasing zoospores. The molecular mechanisms controlling sporangial cytokinesis or sporangial cleavage, and zoospore release are largely unknown. Sporangial cleavage is initiated by a cold shock that eventually compartmentalizes single nuclei within each zoospore. Comparison of EST representation in different cDNA libraries revealed a putative ATP-dependent DEAD-box RNA-helicase gene in P. infestans, Pi-RNH1, which has a 140-fold increased expression level in young zoospores compared to uncleaved sporangia. RNA interference was employed to determine the role of Pi-RNH1 in zoospore development. Silencing efficiencies of up to 99% were achieved in some transiently-silenced lines. These Pi-RNH1-silenced lines produced large aberrant zoospores that had undergone partial cleavage and often had multiple flagella on their surface. Transmission electron microscopy revealed that cytoplasmic vesicles fused in the silenced lines, resulting in the formation of large vesicles. The Pi-RNH1-silenced zoospores were also sensitive to osmotic pressure and often ruptured upon release from the sporangia. These findings indicate that Pi-RNH1 has a major function in zoospore development and its potential role in cytokinesis is discussed.
Assuntos
RNA Helicases DEAD-box/metabolismo , Phytophthora/enzimologia , Phytophthora/patogenicidade , Doenças das Plantas/parasitologia , Esporos/crescimento & desenvolvimento , Proteínas de Algas/química , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Inativação Gênica , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Fenótipo , Filogenia , Phytophthora/genética , Phytophthora/fisiologia , Interferência de RNA , Esporos/enzimologia , Esporos/genética , Esporos/ultraestruturaRESUMO
The mycoparasitic oomycete Pythium oligandrum is homothallic, producing an abundance of thick-walled spiny oospores in culture. After mining a cDNA sequence dataset, we identified a family of genes that code for small tyrosine rich (Pythium oligandrumsmall tyrosine rich (PoStr)) proteins. Sequence analysis identified similarity between the PoStr proteins and putative glycine-rich cell wall proteins from the related plant pathogenic oomycete Pythium ultimum, and mating-induced genes from the oomycete Phytophthora infestans. Expression analysis showed that PoStr transcripts accumulate during oospore production in culture and immunolocalisation indicates the presence of these proteins in oogonial and oospore cell walls. PoStr protein abundance correlated positively with production of oogonia as determined by antibiotic-mediated oogonia suppression. To further characterise the role of PoStr proteins in P. oligandrum oospore production, we silenced this gene family using homology-dependent gene silencing. This represents the first characterisation of genes using gene silencing in a Pythium species. Oospores from silenced strains displayed major ultrastructural changes and were sensitive to degradative enzyme treatment. Oogonia of silenced strains either appeared to be arrested at the mature oosphere stage of development or in around 40 % of the structures, showed a complete suppression of oospore formation. Suppressed oogonia were highly vacuolated and the oogonium wall was thickened by a new inner wall layer. Our data suggest PoStr proteins are probably integral structural components of the normal oospore cell wall and play a key role in oospore formation.
Assuntos
Parede Celular/metabolismo , Família Multigênica , Proteínas/metabolismo , Pythium/metabolismo , Esporos/crescimento & desenvolvimento , Parede Celular/genética , Doenças das Plantas/parasitologia , Transporte Proteico , Proteínas/genética , Pythium/genética , Pythium/crescimento & desenvolvimento , Esporos/genética , Esporos/metabolismoRESUMO
The oomycete Pythium oligandrum is a mycoparasitic biocontrol agent that is able to antagonise several plant pathogens, and can promote plant growth. In order to test the potential usefulness of P. oligandrum as a biocontrol agent against late blight disease caused by the oomycete Phytophthora infestans, we investigated the interaction between P. oligandrum and Ph. infestans using the green fluorescent protein (GFP) as a reporter gene. A CaCl(2) and polyethylene-glycol-based DNA transformation protocol was developed for P. oligandrum and transformants constitutively expressing GFP were produced. Up to 56 % of P. oligandrum transformants showed both antibiotic resistance and fluorescence. Mycoparasitic interactions, including coiling of P. oligandrum hyphae around Ph. infestans hyphae, were observed with fluorescent microscopy. To gain further insights into the nature of P. oligandrum mycoparasitism, we sequenced 2376 clones from cDNA libraries of P. oligandrum mycelium grown in vitro, or on heat-killed Ph. infestans mycelium as the sole nutrient source. 1219 consensus sequences were obtained including transcripts encoding glucanases, proteases, protease inhibitors, putative effectors and elicitors, which may play a role in mycoparasitism. This represents the first published expressed sequence tag (EST) resource for P. oligandrum and provides a platform for further molecular studies and comparative analysis in the Pythiales.