Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(3): 585-595.e6, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38194968

RESUMO

Evolution of SARS-CoV-2 requires the reassessment of current vaccine measures. Here, we characterized BA.2.86 and XBB-derived variant FLip by investigating their neutralization alongside D614G, BA.1, BA.2, BA.4/5, XBB.1.5, and EG.5.1 by sera from 3-dose-vaccinated and bivalent-vaccinated healthcare workers, XBB.1.5-wave-infected first responders, and monoclonal antibody (mAb) S309. We assessed the biology of the variant spikes by measuring viral infectivity and membrane fusogenicity. BA.2.86 is less immune evasive compared to FLip and other XBB variants, consistent with antigenic distances. Importantly, distinct from XBB variants, mAb S309 was unable to neutralize BA.2.86, likely due to a D339H mutation based on modeling. BA.2.86 had relatively high fusogenicity and infectivity in CaLu-3 cells but low fusion and infectivity in 293T-ACE2 cells compared to some XBB variants, suggesting a potentially different conformational stability of BA.2.86 spike. Overall, our study underscores the importance of SARS-CoV-2 variant surveillance and the need for updated COVID-19 vaccines.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Evasão da Resposta Imune , SARS-CoV-2 , Humanos , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/imunologia , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia
2.
J Immunol ; 210(6): 832-841, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36688687

RESUMO

Fibrosis is characterized by inappropriately persistent myofibroblast accumulation and excessive extracellular matrix deposition with the disruption of tissue architecture and organ dysfunction. Regulated death of reparative mesenchymal cells is critical for normal wound repair, but profibrotic signaling promotes myofibroblast resistance to apoptotic stimuli. A complex interplay between immune cells and structural cells underlies lung fibrogenesis. However, there is a paucity of knowledge on how these cell populations interact to orchestrate physiologic and pathologic repair of the injured lung. In this context, gasdermin-D (GsdmD) is a cytoplasmic protein that is activated following cleavage by inflammatory caspases and induces regulated cell death by forming pores in cell membranes. This study was undertaken to evaluate the impact of human (Thp-1) monocyte-derived extracellular vesicles and GsdmD on human lung fibroblast death. Our data show that active GsdmD delivered by monocyte-derived extracellular vesicles induces caspase-independent fibroblast and myofibroblast death. This cell death was partly mediated by GsdmD-independent induction of cellular inhibitor of apoptosis 2 (cIAP-2) in the recipient fibroblast population. Our findings, to our knowledge, define a novel paradigm by which inflammatory monocytes may orchestrate the death of mesenchymal cells in physiologic wound healing, illustrating the potential to leverage this mechanism to eliminate mesenchymal cells and facilitate the resolution of fibrotic repair.


Assuntos
Vesículas Extracelulares , Gasderminas , Humanos , Monócitos , Diferenciação Celular , Fibroblastos , Caspases
3.
Am J Physiol Cell Physiol ; 325(3): C565-C579, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486065

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.


Assuntos
Matriz Extracelular , Fibrose Pulmonar Idiopática , Pulmão , Fenótipo Secretor Associado à Senescência , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Matriz Extracelular/patologia , Pulmão/patologia , Humanos , Animais , Proteínas da Matriz Extracelular/metabolismo
4.
Am J Pathol ; 192(5): 750-761, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183510

RESUMO

Lung fibrosis is characterized by the continuous accumulation of extracellular matrix (ECM) proteins produced by apoptosis-resistant (myo)fibroblasts. Lung epithelial injury promotes the recruitment and activation of fibroblasts, which are necessary for tissue repair and restoration of homeostasis. However, under pathologic conditions, a vicious cycle generated by profibrotic growth factors/cytokines, multicellular interactions, and matrix-associated signaling propagates the wound repair response and promotes lung fibrosis characterized not only by increased quantities of ECM proteins but also by changes in the biomechanical properties of the matrix. Importantly, changes in the biochemical and biomechanical properties of the matrix itself can serve to perpetuate fibroblast activity and propagate fibrosis, even in the absence of the initial stimulus of injury. The development of novel experimental models and methods increasingly facilitates our ability to interrogate fibrotic processes at the cellular and molecular levels. The goal of this review is to discuss the impact of ECM conditions in the development of lung fibrosis and to introduce new approaches to more accurately model the in vivo fibrotic microenvironment. This article highlights the pathologic roles of ECM in terms of mechanical force and the cellular interactions while reviewing in vitro and ex vivo models of lung fibrosis. The improved understanding of the fundamental mechanisms that contribute to lung fibrosis holds promise for identification of new therapeutic targets and improved outcomes.


Assuntos
Fibrose Pulmonar , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose , Humanos , Pulmão/patologia , Fibrose Pulmonar/patologia , Transdução de Sinais
5.
J Intensive Care Med ; 38(1): 21-26, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35815883

RESUMO

Purpose: Elevated ferritin levels are associated with poor outcomes in Covid-19 patients. Optimal timing of ferritin assessment and the merit of longitudinal values remains unclear. Methods: Patients admitted to Henry Ford Hospital with confirmed SARS-CoV-2 were studied. Regression models were used to determine the relation between ferritin and mortality, need for mechanical ventilation, ICU admission, and days on the ventilator. Results: 2265 patients were evaluated. Patients with an initial ferritin of > 490 ng/mL had an increased risk of death (OR 3.4, P < .001), admission to the ICU (OR 2.78, P < .001) and need for mechanical ventilation (OR 3.9, P < .001). There was no difference between admission and Day 1 ICU ferritin levels (611.5 ng/mL vs. 649 ng/mL respectively; P = .07). The decline in ferritin over ICU days 1-4 was similar between survivors and non-survivors. A change in ferritin levels from admission to ICU Day 1 (P = .330), or from ICU Day 1 to 2 (P = .788), did not predict days on the ventilator. Conclusions: Initial Ferritin levels were highly predictive of ICU admission, the need for mechanical ventilation and in-hospital mortality. However, longitudinal measures of ferritin throughout the hospital stay did not provide additional predictive value.


Assuntos
COVID-19 , Humanos , COVID-19/terapia , SARS-CoV-2 , Respiração Artificial , Ventiladores Mecânicos , Ferritinas , Unidades de Terapia Intensiva , Estudos Retrospectivos
6.
Am J Respir Cell Mol Biol ; 66(2): e1-e14, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35103557

RESUMO

Advancements in methods, technology, and our understanding of the pathobiology of lung injury have created the need to update the definition of experimental acute lung injury (ALI). We queried 50 participants with expertise in ALI and acute respiratory distress syndrome using a Delphi method composed of a series of electronic surveys and a virtual workshop. We propose that ALI presents as a "multidimensional entity" characterized by four "domains" that reflect the key pathophysiologic features and underlying biology of human acute respiratory distress syndrome. These domains are 1) histological evidence of tissue injury, 2) alteration of the alveolar-capillary barrier, 3) presence of an inflammatory response, and 4) physiologic dysfunction. For each domain, we present "relevant measurements," defined as those proposed by at least 30% of respondents. We propose that experimental ALI encompasses a continuum of models ranging from those focusing on gaining specific mechanistic insights to those primarily concerned with preclinical testing of novel therapeutics or interventions. We suggest that mechanistic studies may justifiably focus on a single domain of lung injury, but models must document alterations of at least three of the four domains to qualify as "experimental ALI." Finally, we propose that a time criterion defining "acute" in ALI remains relevant, but the actual time may vary based on the specific model and the aspect of injury being modeled. The continuum concept of ALI increases the flexibility and applicability of the definition to multiple models while increasing the likelihood of translating preclinical findings to critically ill patients.


Assuntos
Lesão Pulmonar Aguda/patologia , Inflamação/fisiopatologia , Relatório de Pesquisa/tendências , Lesão Pulmonar Aguda/imunologia , Animais
7.
Clin Sci (Lond) ; 136(10): 747-769, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35621124

RESUMO

Pneumonia and its sequelae, acute lung injury, present unique challenges for pulmonary and critical care healthcare professionals, and these challenges have recently garnered global attention due to the ongoing Sars-CoV-2 pandemic. One limitation to translational investigation of acute lung injury, including its most severe manifestation (acute respiratory distress syndrome, ARDS) has been heterogeneity resulting from the clinical and physiologic diagnosis that represents a wide variety of etiologies. Recent efforts have improved our understanding and approach to heterogeneity by defining sub-phenotypes of ARDS although significant gaps in knowledge remain. Improving our mechanistic understanding of acute lung injury and its most common cause, infectious pneumonia, can advance our approach to precision targeted clinical interventions. Here, we review the pathogenesis of pneumonia and acute lung injury, including how respiratory infections and lung injury disrupt lung homoeostasis, and provide an overview of respiratory microbial pathogenesis, the lung microbiome, and interventions that have been demonstrated to improve outcomes-or not-in human clinical trials.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Pneumonia , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Humanos , Síndrome do Desconforto Respiratório/etiologia , SARS-CoV-2
8.
Physiology (Bethesda) ; 34(1): 43-55, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540232

RESUMO

Fibrosis is a dynamic process with the potential for reversibility and restoration of near-normal tissue architecture and organ function. Herein, we review mechanisms for resolution of organ fibrosis, in particular that involving the lung, with an emphasis on the critical roles of myofibroblast apoptosis and clearance of deposited matrix.


Assuntos
Fibrose/fisiopatologia , Animais , Apoptose/fisiologia , Matriz Extracelular/fisiologia , Humanos , Pulmão/fisiopatologia , Miofibroblastos/fisiologia
9.
Am J Respir Cell Mol Biol ; 60(1): 49-57, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30130138

RESUMO

Fibrotic responses involve multiple cellular processes, including epigenetic changes. Epigenetic changes are sensitive to alterations in the tissue microenvironment such as the flux of tricarboxylic acid (TCA) cycle metabolites. TCA metabolites directly regulate epigenetic states, in part by regulating histone modification-related enzymes. Glutaminolysis is a critical metabolic process by which glutamine is converted to glutamate by glutaminase and then to α-ketoglutarate (α-KG), a TCA cycle metabolite. Idiopathic pulmonary fibrosis (IPF) is a disease characterized by aberrant metabolism, including enhanced glutaminolysis. IPF fibroblasts are apoptosis resistant. In this study, we explored the relationship between glutaminolysis and the resistance to apoptosis of IPF fibroblasts. Inhibition of glutaminolysis decreased expression of XIAP and survivin, members of the inhibitor of apoptosis protein (IAP) family. α-KG is a cofactor for JMJD3 histone demethylase, which targets H3K27me3. In the absence of glutamine, JMJD3 activity in fibroblasts is significantly decreased, whereas H3K27me3 levels are increased. Chromatin immunoprecipitation assays confirmed that JMJD3 directly interacts with XIAP and survivin promoter regions in a glutamine-dependent manner. Exogenous α-KG partially restores JMJD3 function and its interaction with the XIAP and survivin promoter regions under glutamine-deficient conditions. Interestingly, α-KG upregulates XIAP, but not survivin, suggesting differential α-KG-dependent and -independent mechanisms by which glutamine regulates these IAPs. Our data demonstrate a novel mechanism of metabolic regulation in which glutaminolysis promotes apoptosis resistance of IPF fibroblasts through epigenetic regulation of XIAP and survivin.


Assuntos
Epigênese Genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glutamina/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Survivina/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Apoptose , Células Cultivadas , Fibroblastos/patologia , Glutaminase/metabolismo , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Survivina/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
11.
Am J Respir Cell Mol Biol ; 59(3): 295-305, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29652518

RESUMO

Progressive fibrosis is a complication of many chronic diseases, and collectively, organ fibrosis is the leading cause of death in the United States. Fibrosis is characterized by accumulation of activated fibroblasts and excessive deposition of extracellular matrix proteins, especially type I collagen. Extensive research has supported a role for matrix signaling in propagating fibrosis, but type I collagen itself is often considered an end product of fibrosis rather than an important regulator of continued collagen deposition. Type I collagen can activate several cell surface receptors, including α2ß1 integrin and discoidin domain receptor 2 (DDR2). We have previously shown that mice deficient in type I collagen have reduced activation of DDR2 and reduced accumulation of activated myofibroblasts. In the present study, we found that DDR2-null mice are protected from fibrosis. Surprisingly, DDR2-null fibroblasts have a normal and possibly exaggerated activation response to transforming growth factor-ß and do not have diminished proliferation compared with wild-type fibroblasts. DDR2-null fibroblasts are significantly more prone to apoptosis, in vitro and in vivo, than wild-type fibroblasts, supporting a paradigm in which fibroblast resistance to apoptosis is critical for progression of fibrosis. We have identified a novel molecular mechanism by which DDR2 can promote the activation of a PDK1 (3-phosphoinositide dependent protein kinase-1)/Akt survival pathway, and we have found that inhibition of PDK1 can augment fibroblast apoptosis. Furthermore, our studies demonstrate that DDR2 expression is heavily skewed to mesenchymal cells compared with epithelial cells and that idiopathic pulmonary fibrosis cells and tissue demonstrate increased activation of DDR2 and PDK1. Collectively, these findings identify a promising target for fibrosis therapy.


Assuntos
Colágeno Tipo II/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Fibroblastos/metabolismo , Integrinas/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes/métodos , Humanos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
12.
Respir Res ; 19(1): 91, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29747634

RESUMO

BACKGROUND: Fibroblast apoptosis is a critical component of normal repair and the acquisition of an apoptosis-resistant phenotype contributes to the pathogenesis of fibrotic repair. Fibroblasts from fibrotic lungs of humans and mice demonstrate resistance to apoptosis induced by Fas-ligand and prior studies have shown that susceptibility to apoptosis is enhanced when Fas (CD95) expression is increased in these cells. Moreover, prior work shows that Fas expression in fibrotic lung fibroblasts is reduced by epigenetic silencing of the Fas promoter. However, the mechanisms by which microenvironmental stimuli such as TGF-ß1 and substrate stiffness affect fibroblast Fas expression are not well understood. METHODS: Primary normal human lung fibroblasts (IMR-90) were cultured on tissue culture plastic or on polyacrylamide hydrogels with Young's moduli to recapitulate the compliance of normal (400 Pa) or fibrotic (6400 Pa) lung tissue and treated with or without TGF-ß1 (10 ng/mL) in the presence or absence of protein kinase inhibitors and/or inflammatory cytokines. Expression of Fas was assessed by quantitative real time RT-PCR, ELISA and Western blotting. Soluble Fas (sFas) was measured in conditioned media by ELISA. Apoptosis was assessed using the Cell Death Detection Kit and by Western blotting for cleaved PARP. RESULTS: Fas expression and susceptibility to apoptosis was diminished in fibroblasts cultured on 6400 Pa substrates compared to 400 Pa substrates. TGF-ß1 reduced Fas mRNA and protein in a time- and dose-dependent manner dependent on focal adhesion kinase (FAK). Surprisingly, TGF-ß1 did not significantly alter cell-surface Fas expression, but did stimulate secretion of sFas. Finally, enhanced Fas expression and increased susceptibility to apoptosis was induced by combined treatment with TNF-α/IFN-γ and was not inhibited by TGF-ß1. CONCLUSIONS: Soluble and matrix-mediated pro-fibrotic stimuli promote fibroblast resistance to apoptosis by decreasing Fas transcription while stimulating soluble Fas secretion. These findings suggest that distinct mechanisms regulating Fas expression in fibroblasts may serve different functions in the complex temporal and spatial evolution of normal and fibrotic wound-repair responses.


Assuntos
Apoptose/fisiologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Receptor fas/biossíntese , Receptor fas/genética , Apoptose/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibrose , Expressão Gênica , Humanos , Fator de Crescimento Transformador beta1/toxicidade
13.
J Pathol ; 241(1): 6-9, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27757968

RESUMO

Lung fibrosis results from the cumulative effect of dysfunctional wound repair involving multiple cell types, including fibroblasts, epithelial cells, and macrophages responding to an array of soluble and matrix-mediated stimuli. Recent studies have shown that a tyrosine kinase inhibitor that targets FGF, VEGF, and PDGF receptors can slow the rate of decline in pulmonary function in patients with idiopathic pulmonary fibrosis. However, each of these growth factor families is comprised of multiple ligands and receptors with pleiotropic activities on different cell types such that their broad inhibition might have both pro-fibrotic and anti-fibrotic effects, limiting the potential therapeutic efficacy. Continued investigation and delineation of specific roles of individual proteins and receptors on different cell types hold promise for targeting specific pathways with precision and optimizing the potential efficacy of future approaches to lung fibrosis therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fatores de Crescimento de Fibroblastos/fisiologia , Fibrose Pulmonar Idiopática/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Indóis/uso terapêutico , Terapia de Alvo Molecular/métodos , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores
14.
Am J Physiol Lung Cell Mol Physiol ; 312(6): L926-L935, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28360109

RESUMO

Alveolar epithelial cell (AEC) injury and apoptosis are prominent pathological features of idiopathic pulmonary fibrosis (IPF). There is evidence of AEC plasticity in lung injury repair response and in IPF. In this report, we explore the role of focal adhesion kinase (FAK) signaling in determining the fate of lung epithelial cells in response to transforming growth factor-ß1 (TGF-ß1). Rat type II alveolar epithelial cells (RLE-6TN) were treated with or without TGF-ß1, and the expressions of mesenchymal markers, phenotype, and function were analyzed. Pharmacological protein kinase inhibitors were utilized to screen for SMAD-dependent and -independent pathways. SMAD and FAK signaling was analyzed using siRNA knockdown, inhibitors, and expression of a mutant construct of FAK. Apoptosis was measured using cleaved caspase-3 and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. TGF-ß1 induced the acquisition of mesenchymal markers, including α-smooth muscle actin, in RLE-6TN cells and enhanced the contraction of three-dimensional collagen gels. This phenotypical transition or plasticity, epithelial-myofibroblast plasticity (EMP), is dependent on SMAD3 and FAK signaling. FAK activation was found to be dependent on ALK5/SMAD3 signaling. We observed that TGF-ß1 induces both EMP and apoptosis in the same cell culture system but not in the same cell. While blockade of SMAD signaling inhibited EMP, it had a minimal effect on apoptosis; in contrast, inhibition of FAK signaling markedly shifted to an apoptotic fate. The data support that FAK activation determines whether AECs undergo EMP vs. apoptosis in response to TGF-ß1 stimulation. TGF-ß1-induced EMP is FAK- dependent, whereas TGF-ß1-induced apoptosis is favored when FAK signaling is inhibited.


Assuntos
Células Epiteliais/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Pulmão/citologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Modelos Biológicos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fenótipo , Fosforilação/efeitos dos fármacos , Ratos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad3/metabolismo , Sus scrofa , Fatores de Tempo
16.
Am J Respir Cell Mol Biol ; 54(4): 482-92, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26378893

RESUMO

Accumulation of apoptosis-resistant fibroblasts is a hallmark of pulmonary fibrosis. We hypothesized that disruption of inhibitor of apoptosis protein (IAP) family proteins would limit lung fibrosis. We first show that transforming growth factor-ß1 and bleomycin increase X-linked IAP (XIAP) and cellular IAP (cIAP)-1 and -2 in murine lungs and mesenchymal cells. Functional blockade of XIAP and the cIAPs with AT-406, an orally bioavailable second mitochondria-derived activator of caspases (Smac) mimetic, abrogated bleomycin-induced lung fibrosis when given both prophylactically and therapeutically. To determine whether the reduction in fibrosis was predominantly due to AT-406-mediated inhibition of XIAP, we compared the fibrotic response of XIAP-deficient mice (XIAP(-/y)) with littermate controls and found no difference. We found no alterations in total inflammatory cells of either wild-type mice treated with AT-406 or XIAP(-/y) mice. AT-406 treatment limited CCL12 and IFN-γ production, whereas XIAP(-/y) mice exhibited increased IL-1ß expression. Surprisingly, XIAP(-/y) mesenchymal cells had increased resistance to Fas-mediated apoptosis. Functional blockade of cIAPs with AT-406 restored sensitivity to Fas-mediated apoptosis in XIAP(-/y) mesenchymal cells in vitro and increased apoptosis of mesenchymal cells in vivo, indicating that the increased apoptosis resistance in XIAP(-/y) mesenchymal cells was the result of increased cIAP expression. Collectively, these results indicate that: (1) IAPs have a role in the pathogenesis of lung fibrosis; (2) a congenital deficiency of XIAP may be overcome by compensatory mechanisms of other IAPs; and (3) broad functional inhibition of IAPs may be an effective strategy for the treatment of lung fibrosis by promoting mesenchymal cell apoptosis.


Assuntos
Bleomicina/toxicidade , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Fibrose Pulmonar/prevenção & controle , Animais , Apoptose , Azocinas/farmacologia , Compostos Benzidrílicos/farmacologia , Proteínas Inibidoras de Apoptose/genética , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quimioatraentes de Monócitos/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta1/administração & dosagem
17.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1206-17, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27106291

RESUMO

Transforming growth factor-ß (TGF-ß) is a critical driver of acute lung injury and fibrosis. Injury leads to activation of TGF-ß, which regulates changes in the cellular and matrix makeup of the lung during the repair and fibrosis phase. TGF-ß can also initiate alveolar epithelial cell (AEC) apoptosis. Injury leads to destruction of the laminin-rich basement membrane, which is replaced by a provisional matrix composed of arginine-glycine-aspartate (RGD) motif-containing plasma matrix proteins, including vitronectin and fibronectin. To determine the role of specific matrix proteins on TGF-ß-induced apoptosis, we studied primary AECs cultured on different matrix conditions and utilized mice with deletion of vitronectin (Vtn(-/-)) or mice in which the vitronectin RGD motif is mutated to nonintegrin-binding arginine-glycine-glutamate (RGE) (Vtn(RGE/RGE)). We found that AECs cultured on fibronectin and vitronectin or in wild-type mouse serum are resistant to TGF-ß-induced apoptosis. In contrast, AECs cultured on laminin or in serum from Vtn(-/-) or Vtn(RGE/RGE) mice undergo robust TGF-ß-induced apoptosis. Plasminogen activator inhibitor-1 (PAI-1) sensitizes AECs to greater apoptosis by disrupting AEC engagement to vitronectin. Inhibition of integrin-associated signaling proteins augments AEC apoptosis. Mice with transgenic deletion of PAI-1 have less apoptosis after bleomycin, but deletion of vitronectin or disruption of the vitronectin RGD motif reverses this protection, suggesting that the proapoptotic function of PAI-1 is mediated through vitronectin inhibition. Collectively, these data suggest that integrin-matrix signaling is an important regulator of TGF-ß-mediated AEC apoptosis and that PAI-1 functions as a natural regulator of this interaction.


Assuntos
Células Epiteliais Alveolares/fisiologia , Apoptose , Fator de Crescimento Transformador beta/fisiologia , Vitronectina/fisiologia , Motivos de Aminoácidos , Animais , Células Cultivadas , Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Vitronectina/química
18.
Eur Respir J ; 47(6): 1842-54, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27030681

RESUMO

Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.


Assuntos
Cicatriz/patologia , Fibroblastos/patologia , Fibrose Pulmonar Idiopática/patologia , Neoplasias Pulmonares/patologia , Pulmão/patologia , Animais , Autofagia , Carcinogênese , Proliferação de Células , Sobrevivência Celular , Epigênese Genética , Fibroblastos/citologia , Humanos , Inflamação , Pneumopatias/patologia , Camundongos , Metástase Neoplásica , Fenótipo , Medicina de Precisão , Transdução de Sinais
19.
Am J Pathol ; 185(4): 969-86, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25681733

RESUMO

Myofibroblasts are crucial to the pathogenesis of tissue fibrosis. Their formation of stress fibers results in the release of myocardin-related transcription factor (MRTF), a transcriptional coactivator of serum response factor (SRF). MRTF-A (Mkl1)-deficient mice are protected from lung fibrosis. We hypothesized that the SRF/MRTF pathway inhibitor CCG-203971 would modulate myofibroblast function in vitro and limit lung fibrosis in vivo. Normal and idiopathic pulmonary fibrosis lung fibroblasts were treated with/without CCG-203971 (N-[4-chlorophenyl]-1-[3-(2-furanyl)benzoyl]-3-piperidine carboxamide) and/or Fas-activating antibody in the presence/absence of transforming growth factor (TGF)-ß1, and apoptosis was assessed. In vivo studies examined the effect of therapeutically administered CCG-203971 on lung fibrosis in two distinct murine models of fibrosis induced by bleomycin or targeted type II alveolar epithelial injury. In vitro, CCG-203971 prevented nuclear localization of MRTF-A; increased the apoptotic susceptibility of normal and idiopathic pulmonary fibrosis fibroblasts; blocked TGF-ß1-induced myofibroblast differentiation; and inhibited TGF-ß1-induced expression of fibronectin, X-linked inhibitor of apoptosis, and plasminogen activator inhibitor-1. TGF-ß1 did not protect fibroblasts or myofibroblasts from apoptosis in the presence of CCG-203971. In vivo, CCG-203971 significantly reduced lung collagen content in both murine models while decreasing alveolar plasminogen activator inhibitor-1 and promoting myofibroblast apoptosis. These data support a central role of the SRF/MRTF pathway in the pathobiology of lung fibrosis and suggest that its inhibition can help resolve lung fibrosis by promoting fibroblast apoptosis.


Assuntos
Apoptose , Pulmão/metabolismo , Pulmão/patologia , Mesoderma/patologia , Fator de Resposta Sérica/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Adulto , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoproteção/efeitos dos fármacos , Fibronectinas/metabolismo , Fibrose , Humanos , Inflamação/patologia , Mesoderma/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Miofibroblastos/patologia , Ácidos Nipecóticos/administração & dosagem , Ácidos Nipecóticos/farmacologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sus scrofa , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Receptor fas/metabolismo
20.
Am J Physiol Lung Cell Mol Physiol ; 308(4): L344-57, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25502501

RESUMO

Pathological fibrosis is driven by a feedback loop in which the fibrotic extracellular matrix is both a cause and consequence of fibroblast activation. However, the molecular mechanisms underlying this process remain poorly understood. Here we identify yes-associated protein (YAP) (homolog of drosophila Yki) and transcriptional coactivator with PDZ-binding motif (TAZ) (also known as Wwtr1), transcriptional effectors of the Hippo pathway, as key matrix stiffness-regulated coordinators of fibroblast activation and matrix synthesis. YAP and TAZ are prominently expressed in fibrotic but not healthy lung tissue, with particularly pronounced nuclear expression of TAZ in spindle-shaped fibroblastic cells. In culture, both YAP and TAZ accumulate in the nuclei of fibroblasts grown on pathologically stiff matrices but not physiologically compliant matrices. Knockdown of YAP and TAZ together in vitro attenuates key fibroblast functions, including matrix synthesis, contraction, and proliferation, and does so exclusively on pathologically stiff matrices. Profibrotic effects of YAP and TAZ operate, in part, through their transcriptional target plasminogen activator inhibitor-1, which is regulated by matrix stiffness independent of transforming growth factor-ß signaling. Immortalized fibroblasts conditionally expressing active YAP or TAZ mutant proteins overcome soft matrix limitations on growth and promote fibrosis when adoptively transferred to the murine lung, demonstrating the ability of fibroblast YAP/TAZ activation to drive a profibrotic response in vivo. Together, these results identify YAP and TAZ as mechanoactivated coordinators of the matrix-driven feedback loop that amplifies and sustains fibrosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/metabolismo , Fosfoproteínas/metabolismo , Fibrose Pulmonar/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Feminino , Fibroblastos/patologia , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pulmão/patologia , Masculino , Mecanotransdução Celular/genética , Camundongos , Camundongos Endogâmicos NOD , Mutação , Células NIH 3T3 , Fosfoproteínas/genética , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Inibidor 1 de Ativador de Plasminogênio/genética , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Serpina E2/biossíntese , Serpina E2/genética , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA