Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Expert Rev Proteomics ; 20(11): 251-266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37787106

RESUMO

INTRODUCTION: Continuous advances in mass spectrometry (MS) technologies have enabled deeper and more reproducible proteome characterization and a better understanding of biological systems when integrated with other 'omics data. Bioinformatic resources meeting the analysis requirements of increasingly complex MS-based proteomic data and associated multi-omic data are critically needed. These requirements included availability of software that would span diverse types of analyses, scalability for large-scale, compute-intensive applications, and mechanisms to ease adoption of the software. AREAS COVERED: The Galaxy ecosystem meets these requirements by offering a multitude of open-source tools for MS-based proteomics analyses and applications, all in an adaptable, scalable, and accessible computing environment. A thriving global community maintains these software and associated training resources to empower researcher-driven analyses. EXPERT OPINION: The community-supported Galaxy ecosystem remains a crucial contributor to basic biological and clinical studies using MS-based proteomics. In addition to the current status of Galaxy-based resources, we describe ongoing developments for meeting emerging challenges in MS-based proteomic informatics. We hope this review will catalyze increased use of Galaxy by researchers employing MS-based proteomics and inspire software developers to join the community and implement new tools, workflows, and associated training content that will add further value to this already rich ecosystem.


Assuntos
Proteômica , Humanos , Biologia Computacional/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Software
2.
J Proteome Res ; 20(12): 5419-5423, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34709836

RESUMO

Mass spectrometry-based proteomics is a high-throughput technology generating ever-larger amounts of data per project. However, storing, processing, and interpreting these data can be a challenge. A key element in simplifying this process is the development of interactive frameworks focusing on visualization that can greatly simplify both the interpretation of data and the generation of new knowledge. Here we present PeptideShaker Online, a user-friendly web-based framework for the identification of mass spectrometry-based proteomics data, from raw file conversion to interactive visualization of the resulting data. Storage and processing of the data are performed via the versatile Galaxy platform (through SearchGUI, PeptideShaker, and moFF), while the interaction with the results happens via a locally installed web server, thus enabling researchers to process and interpret their own data without requiring advanced bioinformatics skills or direct access to compute-intensive infrastructures. The source code, additional documentation, and a fully functional demo is available at https://github.com/barsnes-group/peptide-shaker-online.


Assuntos
Proteômica , Software , Biologia Computacional/métodos , Internet , Espectrometria de Massas , Proteômica/métodos
3.
Bioinformatics ; 33(16): 2607-2608, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28407033

RESUMO

SUMMARY: The vast, uncoordinated proliferation of bioinformatics resources (databases, software tools, training materials etc.) makes it difficult for users to find them. To facilitate their discovery, various services are being developed to collect such resources into registries. We have developed BioCIDER, which, rather like online shopping 'recommendations', provides a contextualization index to help identify biological resources relevant to the content of the sites in which it is embedded. AVAILABILITY AND IMPLEMENTATION: BioCIDER (www.biocider.org) is an open-source platform. Documentation is available online (https://goo.gl/Klc51G), and source code is freely available via GitHub (https://github.com/BioCIDER). The BioJS widget that enables websites to embed contextualization is available from the BioJS registry (http://biojs.io/). All code is released under an MIT licence. CONTACT: carlos.horro@earlham.ac.uk or rafael.jimenez@elixir-europe.org or manuel@repositive.io.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Software
4.
Gigascience ; 8(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31363752

RESUMO

BACKGROUND: Mapping biomedical data to functional knowledge is an essential task in bioinformatics and can be achieved by querying identifiers (e.g., gene sets) in pathway knowledge bases. However, the isoform and posttranslational modification states of proteins are lost when converting input and pathways into gene-centric lists. FINDINGS: Based on the Reactome knowledge base, we built a network of protein-protein interactions accounting for the documented isoform and modification statuses of proteins. We then implemented a command line application called PathwayMatcher (github.com/PathwayAnalysisPlatform/PathwayMatcher) to query this network. PathwayMatcher supports multiple types of omics data as input and outputs the possibly affected biochemical reactions, subnetworks, and pathways. CONCLUSIONS: PathwayMatcher enables refining the network representation of pathways by including proteoforms defined as protein isoforms with posttranslational modifications. The specificity of pathway analyses is hence adapted to different levels of granularity, and it becomes possible to distinguish interactions between different forms of the same protein.


Assuntos
Biologia Computacional/métodos , Redes Reguladoras de Genes , Transdução de Sinais , Software , Humanos , Polimorfismo de Nucleotídeo Único , Mapeamento de Interação de Proteínas/métodos , Processamento de Proteína Pós-Traducional
5.
F1000Res ; 6: 465, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28529710

RESUMO

The Brassica Information Portal (BIP) is a centralised repository for brassica phenotypic data. The site hosts trait data associated with brassica research and breeding experiments conducted on brassica crops, that are used as oilseeds, vegetables, livestock forage and fodder and for biofuels. A key feature is the explicit management of meta-data describing the provenance and relationships between experimental plant materials, as well as trial design and trait descriptors. BIP is an open access and open source project, built on the schema of CropStoreDB, and as such can provide trait data management strategies for any crop data. A new user interface and programmatic submission/retrieval system helps to simplify data access for researchers, breeders and other end-users. BIP opens up the opportunity to apply integrative, cross-project analyses to data generated by the Brassica Research Community. Here, we present a short description of the current status of the repository.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA