Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cyborg Bionic Syst ; 6: 0077, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435709

RESUMO

Flexible miniature robots are expected to enter difficult-to-reach areas in vivo to carry out targeted operations, attracting widespread attention. However, it is challenging for the existing soft miniature robots to substantially alter their stable shape once the structure is designed. This limitation leads to a fixed motion mode, which subsequently restricts their operating environment. In this study, we designed a biocompatible flexible miniature robot with a variable stable form that is capable of adapting to complex terrain environments through multiple movement modes. Inspired by the reversible stretching reaction of alginate saline gel stimulated by changes in environmental ion concentration, we manufactured a morphologically changeable super-soft hydrogel miniature robot body. According to the stretch and contraction shapes of the flexible hydrogel miniature robot, we designed magnetic fields for swing and rolling motion modes to realize multi-shape movement. The experimental results demonstrate that the deflection angle of the designed flexible miniature robot is reversible and can reach a maximum of 180°. The flexible miniature robot can complete forward swinging in the bar stretch state and tumbling motion in the spherical state. We anticipate that flexible hydrogel miniature robots with multiple morphologies and multimodal motion have great potential for biomedical applications in complex, unstructured, and enclosed living environments.

2.
Lab Chip ; 23(5): 848-868, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36629004

RESUMO

Due to their small sizes, microrobots are advantageous for accessing hard-to-reach spaces for delivery and measurement. However, their small sizes also bring challenges in on-board powering, thus usually requiring actuation by external energy. Microrobots actuated by external energy have been applied to the fields of physics, biology, medical science, and engineering. Among these actuation sources, light and magnetic fields show advantages in high precision and high biocompatibility. This paper reviews the recent advances in the design, actuation, and applications of microrobots driven by light and magnetic fields. For light-driven microrobots, we summarized the uses of optical tweezers, optoelectronic tweezers, and heat-mediated optical manipulation techniques. For magnetically driven microrobots, we summarized the uses of torque-driven microrobots, force-driven microrobots, and shape-deformable microrobots. Then, we compared the two types of field-driven microrobots and reviewed their advantages and disadvantages. The paper concludes with an outlook for the joint use of optical and magnetic field actuation in microrobots.

3.
Micromachines (Basel) ; 12(9)2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34577773

RESUMO

Three-dimensional (3D) assembly of microstructures encapsulating co-cultured multiple cells can highly recapitulate the in vivo tissues, which has a great prospect in tissue engineering and regenerative medicine. In order to fully mimic the in vivo architecture, the hydrogel microstructure needs to be designed into a special shape and spatially organized without damage, which is very challenging because of its limited mechanical properties. Here, we propose a 3D assembly method for the construction of liver lobule-like microstructures (a mimetic gear-like microstructure of liver lobule) through the local fluidic interaction. Although the method has been proven and is known as the consensual means for constructing 3D cellular models, it is still challenging to improve the assembly efficiency and the assembly success rate by adjusting the fluidic force of non-contact lifting and stacking. To improve the assembly efficiency and the assembly success rate, a fluidic simulation model is proposed based on the mechanism of the interaction between the microstructures and the fluid. By computing the simulation model, we found three main parameters that affect the assembly process; they are the velocity of the microflow, the tilt angle of the manipulator and the spacing between the microstructures and the manipulator. Compared with our previous work, the assembly efficiency was significantly improved 63.8% by using the optimized parameters of the model for assembly process, and the assembly success rate was improved from 98% to 99.5%. With the assistance of the assembly simulation, the luminal 3D micromodels of liver tissue show suitable bioactivity and biocompatibility after long-term hepatocytes culture. We anticipate that our method will be capable of improving the efficiency of the microstructures assembly to regenerate more complex multicellular constructs with unprecedented possibilities for future tissue engineering applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA