Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35106603

RESUMO

Identifying linked cases of infection is a critical component of the public health response to viral infectious diseases. In a clinical context, there is a need to make rapid assessments of whether cases of infection have arrived independently onto a ward, or are potentially linked via direct transmission. Viral genome sequence data are of great value in making these assessments, but are often not the only form of data available. Here, we describe A2B-COVID, a method for the rapid identification of potentially linked cases of COVID-19 infection designed for clinical settings. Our method combines knowledge about infection dynamics, data describing the movements of individuals, and evolutionary analysis of genome sequences to assess whether data collected from cases of infection are consistent or inconsistent with linkage via direct transmission. A retrospective analysis of data from two wards at Cambridge University Hospitals NHS Foundation Trust during the first wave of the pandemic showed qualitatively different patterns of linkage between cases on designated COVID-19 and non-COVID-19 wards. The subsequent real-time application of our method to data from the second epidemic wave highlights its value for monitoring cases of infection in a clinical context.


Assuntos
COVID-19 , SARS-CoV-2 , Hospitais , Humanos , Pandemias , Estudos Retrospectivos , SARS-CoV-2/genética
2.
Proc Natl Acad Sci U S A ; 116(12): 5693-5698, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819890

RESUMO

Recent sequencing efforts have led to estimates of human cytomegalovirus (HCMV) genome-wide intrahost diversity that rival those of persistent RNA viruses [Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF (2011) PLoS Pathog 7:e1001344]. Here, we deep sequence HCMV genomes recovered from single and longitudinally collected blood samples from immunocompromised children to show that the observations of high within-host HCMV nucleotide diversity are explained by the frequent occurrence of mixed infections caused by genetically distant strains. To confirm this finding, we reconstructed within-host viral haplotypes from short-read sequence data. We verify that within-host HCMV nucleotide diversity in unmixed infections is no greater than that of other DNA viruses analyzed by the same sequencing and bioinformatic methods and considerably less than that of human immunodeficiency and hepatitis C viruses. By resolving individual viral haplotypes within patients, we reconstruct the timing, likely origins, and natural history of superinfecting strains. We uncover evidence for within-host recombination between genetically distinct HCMV strains, observing the loss of the parental virus containing the nonrecombinant fragment. The data suggest selection for strains containing the recombinant fragment, generating testable hypotheses about HCMV evolution and pathogenesis. These results highlight that high HCMV diversity present in some samples is caused by coinfection with multiple distinct strains and provide reassurance that within the host diversity for single-strain HCMV infections is no greater than for other herpesviruses.


Assuntos
Citomegalovirus/genética , Recombinação Genética/genética , Superinfecção/genética , Sequência de Bases/genética , Criança , Pré-Escolar , Infecções por Citomegalovirus/virologia , DNA Viral/genética , Feminino , Variação Genética/genética , Genoma Humano/genética , Genoma Viral , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Hospedeiro Imunocomprometido/genética , Lactente , Recém-Nascido , Masculino , Análise de Sequência de DNA/métodos
3.
Br J Haematol ; 195(2): 249-255, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34431085

RESUMO

Chronic active Epstein-Barr virus (CAEBV) disease is a rare condition characterised by persistent EBV infection in previously healthy individuals. Defective EBV genomes were found in East Asian patients with CAEBV. In the present study, we sequenced 14 blood EBV samples from three UK patients with CAEBV, comparing the results with saliva CAEBV samples and other conditions. We observed EBV deletions in blood, some of which may disrupt viral replication, but not saliva in CAEBV. Deletions were lost overtime after successful treatment. These findings are compatible with CAEBV being associated with the evolution and persistence of EBV+ haematological clones that are lost on successful treatment.


Assuntos
Infecções por Vírus Epstein-Barr/sangue , Herpesvirus Humano 4/genética , Saliva/metabolismo , Deleção de Sequência/genética , Adolescente , Biomarcadores/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Doença Crônica , Vírus Defeituosos/genética , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/epidemiologia , Ásia Oriental/epidemiologia , Feminino , Humanos , Fatores Imunológicos/uso terapêutico , Masculino , Transplante de Células-Tronco de Sangue Periférico/métodos , Polimorfismo de Nucleotídeo Único/genética , Rituximab/uso terapêutico , Resultado do Tratamento , Replicação Viral/genética
4.
Ann Hum Biol ; 46(2): 99-108, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31113254

RESUMO

Background: Simonti et al. reported variation in the frequency of Neanderthal alleles found in modern humans and argued that they may have provided an evolutionary advantage. One such allele is SNP rs3917862, associated with hypercoagulability. rs3917862 can be deleterious, but can also help prevent blood loss. Aim: To investigate two possible selective pressure hypotheses for rs3917862 surviving to higher frequencies: deaths from interpersonal violent trauma and childbirth. Subjects and methods: Mortality data from modern hunter-gatherers models the living conditions and causes of death of humans and Neanderthals at the point of admixture. Results: National census data indicates a positive correlation between the presence of rs3917862 and decreased maternal mortality ratios. When the maternal mortality ratio is modelled using GDP, births attended by skilled assistants and the presence of rs3917862, women are 0.1% more likely to die in childbirth in populations lacking rs3917862. Deaths due to violence show no correlation with rs3917862. Conclusion: These findings challenge the idea that Neanderthal admixture has negatively impacted the overall health of modern humans. Maternal survival may have acted as a selective pressure for the persistence of hypercoagulability alleles in modern Europeans. Understanding the role of hypercoagulability in childbirth, and the role of rs3917862, could help to reduce maternal mortality ratios.


Assuntos
Longevidade/genética , Mães/estatística & dados numéricos , Selectina-P/genética , Abuso Físico/estatística & dados numéricos , Polimorfismo de Nucleotídeo Único/genética , Seleção Genética , Alelos , Animais , Europa (Continente) , Frequência do Gene , Humanos , Homem de Neandertal/genética , Selectina-P/metabolismo , Tanzânia , Trombofilia/genética , População Branca
5.
J Infect Dis ; 218(10): 1592-1601, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29986093

RESUMO

Background: Varicella zoster virus (VZV) may cause encephalitis, both with and without rash. Here we investigate whether viruses recovered from the central nervous system (CNS; encephalitis or meningitis) differ genetically from those recovered from non-CNS samples. Methods: Enrichment-based deep sequencing of 45 VZV genomes from cerebral spinal fluid (CSF), plasma, bronchoalveolar lavage (BAL), and vesicles was carried out with samples collected from 34 patients with and without VZV infection of the CNS. Results: Viral sequences from multiple sites in the same patient were identical at the consensus level. Virus from vesicle fluid and CSF in cases of meningitis showed low-level diversity. By contrast, plasma, BAL, and encephalitis had higher numbers of variant alleles. Two CSF-encephalitis samples had high genetic diversity, with variant frequency patterns typical of mixed infections with different clades. Conclusions: Low viral genetic diversity in vesicle fluid is compatible with previous observations that VZV skin lesions arise from single or low numbers of virions. A similar result was observed in VZV from cases of VZV meningitis, a generally self-limiting infection. CSF from cases of encephalitis had higher diversity with evidence for mixed clade infections in 2 cases. We hypothesize that reactivation from multiple neurons may contribute to the pathogenesis of VZV encephalitis.


Assuntos
DNA Viral/líquido cefalorraquidiano , Encefalite por Varicela Zoster/virologia , Herpesvirus Humano 3/classificação , Herpesvirus Humano 3/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Coinfecção/virologia , Vesículas Citoplasmáticas/virologia , Variação Genética , Genoma Viral/genética , Humanos , Pessoa de Meia-Idade , Carga Viral , Adulto Jovem
6.
J Infect Dis ; 218(8): 1261-1271, 2018 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-29917114

RESUMO

Background: Adenoviruses are significant pathogens for the immunocompromised, arising from primary infection or reinfection. Serotyping is insufficient to support nosocomial transmission investigations. We investigate whether whole-genome sequencing (WGS) provides clinically relevant information on transmission among patients in a pediatric tertiary hospital. Methods: We developed a target-enriched adenovirus WGS technique for clinical samples and retrospectively sequenced 107 adenovirus-positive residual diagnostic samples, including viremias (>5 × 104 copies/mL), from 37 patients collected January 2011-March 2016. Whole-genome sequencing was used to determine genotype and for phylogenetic analysis. Results: Adenovirus sequences were recovered from 105 of 107 samples. Full genome sequences were recovered from all 20 nonspecies C samples and from 36 of 85 species C viruses, with partial genome sequences recovered from the rest. Whole-genome phylogenetic analysis suggested linkage of 3 genotype A31 cases and uncovered an unsuspected epidemiological link to an A31 infection first detected on the same ward 4 years earlier. In 9 samples from 1 patient who died, we identified a mixed genotype adenovirus infection. Conclusions: Adenovirus WGS from clinical samples is possible and useful for genotyping and molecular epidemiology. Whole-genome sequencing identified likely nosocomial transmission with greater resolution than conventional genotyping and distinguished between adenovirus disease due to single or multiple genotypes.


Assuntos
Adenoviridae/genética , Infecções por Adenovirus Humanos/virologia , Infecção Hospitalar/virologia , Genótipo , Hospedeiro Imunocomprometido , Sequenciamento Completo do Genoma , Adenoviridae/classificação , Infecções por Adenovirus Humanos/transmissão , Adolescente , Criança , Pré-Escolar , Infecção Hospitalar/transmissão , Genômica , Humanos , Lactente , Epidemiologia Molecular , Filogenia
8.
Ann Hum Biol ; 44(5): 397-407, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28511559

RESUMO

BACKGROUND: The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. METHODS: This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. RESULTS: Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. CONCLUSIONS: Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.


Assuntos
Arqueologia , Evolução Biológica , Migração Humana , África Subsaariana , Distribuição Animal , Animais , Doenças Transmissíveis/epidemiologia , Humanos
9.
Br J Haematol ; 175(4): 559-576, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27748521

RESUMO

Epstein-Barr virus (EBV) infection is ubiquitous in humans, but the majority of infections have an asymptomatic or self-limiting clinical course. Rarely, individuals may develop a pathological EBV infection with a variety of life threatening complications (including haemophagocytosis and malignancy) and others develop asymptomatic chronic EBV viraemia. Although an impaired ability to control EBV infection has long been recognised as a hallmark of severe T-cell immunodeficiency, the advent of next generation sequencing has identified a series of Primary Immunodeficiencies in which EBV-related pathology is the dominant feature. Chronic active EBV infection is defined as chronic EBV viraemia associated with systemic lymphoproliferative disease, in the absence of immunodeficiency. Descriptions of larger cohorts of patients with chronic active EBV in recent years have significantly advanced our understanding of this clinical syndrome. In this review we summarise the current understanding of the pathophysiology and natural history of these diseases and clinical syndromes, and discuss approaches to the investigation and treatment of severe or atypical EBV infection.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Síndromes de Imunodeficiência/complicações , Autoimunidade , Transformação Celular Viral , Doença Crônica , Suscetibilidade a Doenças , Infecções por Vírus Epstein-Barr/diagnóstico , Predisposição Genética para Doença , Variação Genética , Genoma Viral , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Hospedeiro Imunocomprometido , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/etiologia , Síndromes de Imunodeficiência/metabolismo , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/etiologia , Transtornos Linfoproliferativos/etiologia , Neoplasias/etiologia , Índice de Gravidade de Doença , Ativação Viral
10.
Rev Med Virol ; 25(2): 71-84, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25430668

RESUMO

Epstein-Barr virus (EBV) infects 95% of the adult population and is the cause of infectious mononucleosis. It is also associated with 1% of cancers worldwide, such as nasopharyngeal carcinoma, Hodgkin's lymphoma and Burkitt's lymphoma. Human and cancer genetic studies are now major forces determining gene variants associated with many cancers, including nasopharyngeal carcinoma and Hodgkin's lymphoma. Host genetics is also important in infectious disease; however, there have been no large-scale efforts towards understanding the contribution that human genetic variation plays in primary EBV infection and latency. This review covers 25 years of studies into host genetic susceptibility to EBV infection and disease, from candidate gene studies, to the first genome-wide association study of EBV antibody response, and an EBV-status stratified genome-wide association study of Hodgkin's lymphoma. Although many genes are implicated in EBV-related disease, studies are often small, not replicated or followed up in a different disease. Larger, appropriately powered genomic studies to understand the host response to EBV will be needed to move our understanding of the biology of EBV infection beyond the handful of genes currently identified. Fifty years since the discovery of EBV and its identification as a human oncogenic virus, a glimpse of the future is shown by the first whole-genome and whole-exome studies, revealing new human genes at the heart of the host-EBV interaction.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Predisposição Genética para Doença , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Latência Viral/genética , Estudos de Associação Genética , Humanos
11.
Am J Phys Anthropol ; 160(3): 379-88, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27063929

RESUMO

High quality Altai Neanderthal and Denisovan genomes are revealing which regions of archaic hominin DNA have persisted in the modern human genome. A number of these regions are associated with response to infection and immunity, with a suggestion that derived Neanderthal alleles found in modern Europeans and East Asians may be associated with autoimmunity. As such Neanderthal genomes are an independent line of evidence of which infectious diseases Neanderthals were genetically adapted to. Sympathetically, human genome adaptive introgression is an independent line of evidence of which infectious diseases were important for AMH coming in to Eurasia and interacting with Neanderthals. The Neanderthals and Denisovans present interesting cases of hominin hunter-gatherers adapted to a Eurasian rather than African infectious disease package. Independent sources of DNA-based evidence allow a re-evaluation of the first epidemiologic transition and how infectious disease affected Pleistocene hominins. By combining skeletal, archaeological and genetic evidence from modern humans and extinct Eurasian hominins, we question whether the first epidemiologic transition in Eurasia featured a new package of infectious diseases or a change in the impact of existing pathogens. Coupled with pathogen genomics, this approach supports the view that many infectious diseases are pre-Neolithic, and the list continues to expand. The transfer of pathogens between hominin populations, including the expansion of pathogens from Africa, may also have played a role in the extinction of the Neanderthals and offers an important mechanism to understand hominin-hominin interactions well back beyond the current limits for aDNA extraction from fossils alone. Am J Phys Anthropol 160:379-388, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Doenças Transmissíveis/genética , Doenças Transmissíveis/imunologia , Genoma/genética , Genoma/imunologia , Homem de Neandertal/genética , Homem de Neandertal/imunologia , Animais , Antropologia Física , Doenças Transmissíveis/história , Doenças Transmissíveis/microbiologia , Evolução Molecular , Fósseis , Genômica , História Antiga , Humanos
13.
Am J Biol Anthropol ; 182(4): 513-531, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38006200

RESUMO

The impact of endemic and epidemic disease on humans has traditionally been seen as a comparatively recent historical phenomenon associated with the Neolithisation of human groups, an increase in population size led by sedentarism, and increasing contact with domesticated animals as well as species occupying opportunistic symbiotic and ectosymbiotic relationships with humans. The orthodox approach is that Neolithisation created the conditions for increasing population size able to support a reservoir of infectious disease sufficient to act as selective pressure. This orthodoxy is the result of an overly simplistic reliance on skeletal data assuming that no skeletal lesions equated to a healthy individual, underpinned by the assumption that hunter-gatherer groups were inherently healthy while agricultural groups acted as infectious disease reservoirs. The work of van Blerkom, Am. J. Phys. Anthropol., vol. suppl 37 (2003), Wolfe et al., Nature, vol. 447 (2007) and Houldcroft and Underdown, Am. J. Phys. Anthropol., vol. 160, (2016) has changed this landscape by arguing that humans and pathogens have long been fellow travelers. The package of infectious diseases experienced by our ancient ancestors may not be as dissimilar to modern infectious diseases as was once believed. The importance of DNA, from ancient and modern sources, to the study of the antiquity of infectious disease, and its role as a selective pressure cannot be overstated. Here we consider evidence of ancient epidemic and endemic infectious diseases with inferences from modern and ancient human and hominin DNA, and from circulating and extinct pathogen genomes. We argue that the pandemics of the past are a vital tool to unlock the weapons needed to fight pandemics of the future.


Assuntos
Doenças Transmissíveis , Hominidae , Animais , Humanos , Amigos , Doenças Transmissíveis/epidemiologia , Genoma , DNA
14.
Genome Biol Evol ; 15(3)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930529

RESUMO

Studies of ancient DNA have transformed our understanding of human evolution. Paleogenomics can also reveal historic and prehistoric agents of disease, including endemic, epidemic, and pandemic pathogens. Viruses-and in particular those with single- or double-stranded DNA genomes-are an important part of the paleogenomic revolution, preserving within some remains or environmental samples for tens of thousands of years. The results of these studies capture the public imagination, as well as giving scientists a unique perspective on some of the more slowly evolving viruses which cause disease. In this review, we revisit the first studies of historical virus genetic material in the 1990s, through to the genomic revolution of recent years. We look at how paleogenomics works for viral pathogens, such as the need for careful precautions against modern contamination and robust computational pipelines to identify and analyze authenticated viral sequences. We discuss the insights into virus evolution which have been gained through paleogenomics, concentrating on three DNA viruses in particular: parvovirus B19, herpes simplex virus 1, and smallpox. As we consider recent worldwide transmission of monkeypox and synthetic biology tools that allow the potential reconstruction of extinct viruses, we show that studying historical and ancient virus evolution has never been more topical.


Assuntos
Genômica , Vírus , Humanos , Genômica/métodos , DNA Antigo , Paleontologia , DNA , Vírus/genética
15.
Microb Genom ; 9(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748435

RESUMO

Human adenovirus F41 causes acute gastroenteritis in children, and has recently been associated with an apparent increase in paediatric hepatitis of unknown aetiology in the UK, with further cases reported in multiple countries. Relatively little is known about the genetic diversity of adenovirus F41 in UK children; and it is unclear what, if any, impact the COVID-19 pandemic has had on viral diversity in the UK. Methods that allow F41 to be sequenced from clinical samples without the need for viral culture are required to provide the genomic data to address these questions. Therefore, we evaluated an overlapping-amplicon method of sequencing adenovirus genomes from clinical samples using Oxford Nanopore technology. We applied this method to a small sample of adenovirus-species-F-positive extracts collected as part of standard care in the East of England region in January-May 2022. This method produced genomes with >75 % coverage in 13/22 samples and >50 % coverage in 19/22 samples. We identified two F41 lineages present in paediatric patients in the East of England in 2022. Where F41 genomes from paediatric hepatitis cases were available (n=2), these genomes fell within the diversity of F41 from the UK and continental Europe sequenced before and after the 2020-2021 phase of the COVID-19 pandemic. Our analyses suggest that overlapping amplicon sequencing is an appropriate method for generating F41 genomic data from high-virus-load clinical samples, and currently circulating F41 viral lineages were present in the UK and Europe before the COVID-19 pandemic.


Assuntos
Infecções por Adenoviridae , COVID-19 , Humanos , Criança , COVID-19/epidemiologia , Pandemias , Análise de Sequência , Adenoviridae/genética , Variação Genética
16.
Virus Evol ; 9(1): vead023, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066020

RESUMO

Human enteric adenovirus species F (HAdV-F) is a leading cause of childhood diarrhoeal deaths. The genomic analysis would be key to understanding transmission dynamics, potential drivers of disease severity, and vaccine development. However, currently, there are limited HAdV-F genomic data globally. Here, we sequenced and analysed HAdV-F from stool samples collected in coastal Kenya between 2013 and 2022. The samples were collected at Kilifi County Hospital in coastal Kenya from children <13 years of age who reported a history of three or more loose stools in the previous 24 hours. The genomes were analysed together with the data from the rest of the world by phylogenetic analysis and mutational profiling. Types and lineages were assigned based on phylogenetic clustering consistent with the previously described criteria and nomenclature. Participant clinical and demographic data were linked to genotypic data. Of ninety-one cases identified using real-time Polymerase Chain Reaction, eighty-eight near-complete genomes were assembled, and these were classified into HAdV-F40 (n = 41) and HAdV-F41 (n = 47). These types co-circulated throughout the study period. Three and four distinct lineages were observed for HAdV-F40 (Lineages 1-3) and HAdV-F41 (Lineages 1, 2A, 3A, 3C, and 3D). Types F40 and F41 coinfections were observed in five samples and F41 and B7 in one sample. Two children with F40 and 41 coinfections were also infected with rotavirus and had moderate and severe diseases as defined using the Vesikari Scoring System, respectively. Intratypic recombination was found in four HAdV-F40 sequences occurring between Lineages 1 and 3. None of the HAdV-F41 cases had jaundice. This study provides evidence of extensive genetic diversity, coinfections, and recombination within HAdV-F40 in a rural coastal Kenya that will inform public health policy, vaccine development that includes the locally circulating lineages, and molecular diagnostic assay development. We recommend future comprehensive studies elucidating on HAdV-F genetic diversity and immunity for rational vaccine development.

17.
Sci Total Environ ; 857(Pt 2): 159579, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270375

RESUMO

As of 8 July 2022, the World Health Organization (WHO) have reported 1010 probable cases of acute hepatitis of unknown aetiology in children worldwide, including approximately 250 cases in the United Kingdom (UK). Clinical presentations have often been severe, with liver transplantation a frequent clinical outcome. Human adenovirus F41 (HAdV-F41) has been detected in most children with acute hepatitis, but its role in the pathogenesis of this infection has yet to be established. Wastewater-based epidemiology (WBE) has become a well-established tool for monitoring the community spread of SARS-CoV-2, as well as other pathogens and chemicals. In this study, we adopted a WBE approach to monitoring levels of HAdV-F40/41 in wastewater before and during an acute hepatitis outbreak in Northern Ireland. We report increasing detection of HAdV-F40/41 in wastewater, concomitant with increasing numbers of clinical cases. Amplicon whole genome sequencing further classified the wastewater-derived HAdV as belonging to the F41 genotype which in turn was homologous to clinically derived sequences. We propose that WBE has the potential to inform community surveillance of HAdV-F41 and can further contribute to the ongoing global discussion supporting HAdV-F41 involvement in acute hepatitis cases.


Assuntos
Adenovírus Humanos , COVID-19 , Hepatite , Criança , Humanos , Águas Residuárias , SARS-CoV-2 , Doença Aguda
18.
Front Immunol ; 13: 1083230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591233

RESUMO

Human cytomegalovirus (HCMV) infection and periodic reactivation is, generally, well controlled by adaptative immune responses in the healthy. In older people, overt HCMV disease is rarely seen despite the association of HCMV with increased risk of mortality; evidence from studies of unwell aged populations suggest that HCMV seropositivity is an important co-morbidity factor. HCMV genomes have been detected in urine from older donors, suggesting that the immune response prevents systemic disease but possibly immunomodulation due to lifelong viral carriage may alter its efficacy at peripheral tissue sites. Previously we have demonstrated that there were no age-related expansions of T cell responses to HCMV or increase in latent viral carriage with age and these T cells produced anti-viral cytokines and viremia was very rarely detected. To investigate the efficacy of anti-HCMV responses with increasing age, we used an in vitro Viral Dissemination Assay (VDA) using autologous dermal fibroblasts to determine the anti-viral effector capacity of total PBMC, as well as important subsets (T cells, NK cells). In parallel we assessed components of the humoral response (antibody neutralization) and combined this with qPCR detection of HCMV in blood, saliva and urine in a cohort of young and old donors. Consistent with previous studies, we again show HCMV specific cIL-10, IFNγ and TNFα T cell responses to peptides did not show an age-related defect. However, assessment of direct anti-viral cellular and antibody-mediated adaptive immune responses using the VDA shows that older donors are significantly less able to control viral dissemination in an in vitro assay compared to young donors. Corroborating this observation, we detected viral genomes in saliva samples only from older donors, these donors had a defect in cellular control of viral spread in our in vitro assay. Phenotyping of fibroblasts used in this study shows expression of a number of checkpoint inhibitor ligands which may contribute to the defects observed. The potential to therapeutically intervene in checkpoint inhibitor pathways to prevent HCMV reactivation in the unwell aged is an exciting avenue to explore.


Assuntos
Antivirais , Citomegalovirus , Idoso , Humanos , Leucócitos Mononucleares , Imunidade Adaptativa , Replicação Viral
19.
Sci Adv ; 8(30): eabo4435, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35895820

RESUMO

Human herpes simplex virus 1 (HSV-1), a life-long infection spread by oral contact, infects a majority of adults globally. Phylogeographic clustering of sampled diversity into European, pan-Eurasian, and African groups has suggested the virus codiverged with human migrations out of Africa, although a much younger origin has also been proposed. We present three full ancient European HSV-1 genomes and one partial genome, dating from the 3rd to 17th century CE, sequenced to up to 9.5× with paired human genomes up to 10.16×. Considering a dataset of modern and ancient genomes, we apply phylogenetic methods to estimate the age of sampled modern Eurasian HSV-1 diversity to 4.68 (3.87 to 5.65) ka. Extrapolation of estimated rates to a global dataset points to the age of extant sampled HSV-1 as 5.29 (4.60 to 6.12) ka, suggesting HSV-1 lineage replacement coinciding with the late Neolithic period and following Bronze Age migrations.

20.
Elife ; 102021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34499030

RESUMO

Analysis of viral DNA from human remains suggests that the transatlantic slave trade may have introduced new pathogens that contributed to the devastating disease outbreaks in colonial Mexico.


Assuntos
Doenças Transmissíveis , América/epidemiologia , Doenças Transmissíveis/epidemiologia , Humanos , México/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA