Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Pathog ; 13(7): e1006531, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28742139

RESUMO

Whooping cough, or pertussis, is a contagious disease of the respiratory tract that is re-emerging worldwide despite high vaccination coverage. The causative agent of this disease is the Gram-negative Bordetella pertussis. Knowledge on complement evasion strategies of this pathogen is limited. However, this is of great importance for future vaccine development as it has become apparent that a novel pertussis vaccine is needed. Here, we unravel the effect of Virulence associated gene 8 (Vag8) of B. pertussis on the human complement system at the molecular level. We show that both recombinant and endogenously secreted Vag8 inhibit complement deposition on the bacterial surface at the level of C4b. We reveal that Vag8 binding to human C1-inhibitor (C1-inh) interferes with the binding of C1-inh to C1s, C1r and MASP-2, resulting in the release of active proteases that subsequently cleave C2 and C4 away from the bacterial surface. We demonstrate that the depletion of these complement components in the bacterial surrounding and subsequent decreased deposition on B. pertussis leads to less complement-mediated bacterial killing. Vag8 is the first protein described that specifically prevents C1s, C1r and MASP-2 binding to C1-inh and thereby mediates complement consumption away from the bacterial surface. Unravelling the mechanism of this unique complement evasion strategy of B. pertussis is one of the first steps towards understanding the interactions between the first line of defense complement and B. pertussis.


Assuntos
Proteínas de Bactérias/imunologia , Bordetella pertussis/imunologia , Complemento C1/imunologia , Complemento C2/imunologia , Complemento C4/imunologia , Fatores de Virulência de Bordetella/imunologia , Coqueluche/imunologia , Proteínas de Bactérias/genética , Bordetella pertussis/genética , Humanos , Virulência , Fatores de Virulência de Bordetella/genética , Coqueluche/microbiologia
2.
Emerg Microbes Infect ; 10(1): 1358-1368, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34132167

RESUMO

Respiratory infections caused by Bordetella pertussis are reemerging despite high pertussis vaccination coverage. Since the introduction of the acellular pertussis vaccine in the late twentieth century, circulating B. pertussis strains increasingly lack expression of the vaccine component pertactin (Prn). In some countries, up to 90% of the circulating B. pertussis strains are deficient in Prn. To better understand the resurgence of pertussis, we investigated the response of human monocyte-derived dendritic cells (moDCs) to naturally circulating Prn-expressing (Prn-Pos) and Prn-deficient (Prn-Neg) B. pertussis strains from 2016 in the Netherlands. Transcriptome analysis of moDC showed enriched IFNα response-associated gene expression after exposure to Prn-Pos B. pertussis strains, whereas the Prn-Neg strains induced enriched expression of interleukin- and TNF-signaling genes, as well as other genes involved in immune activation. Multiplex immune assays confirmed enhanced proinflammatory cytokine secretion by Prn-Neg stimulated moDC. Comparison of the proteomes from the Prn-Pos and Prn-Neg strains revealed, next to the difference in Prn, differential expression of a number of other proteins including several proteins involved in metabolic processes. Our findings indicate that Prn-deficient B. pertussis strains induce a distinct and stronger immune activation of moDCs than the Prn-Pos strains. These findings highlight the role of pathogen adaptation in the resurgence of pertussis as well as the effects that vaccine pressure can have on a bacterial population.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Bordetella pertussis/imunologia , Células Dendríticas/imunologia , Transcriptoma , Fatores de Virulência de Bordetella/genética , Adaptação Biológica , Proteínas da Membrana Bacteriana Externa/metabolismo , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Bordetella pertussis/patogenicidade , Citocinas/genética , Citocinas/metabolismo , Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Vacina contra Coqueluche/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Fatores de Virulência de Bordetella/metabolismo , Coqueluche/microbiologia
3.
Science ; 365(6448)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31273097

RESUMO

Multiple cytosolic innate sensors form large signalosomes after activation, but this assembly needs to be tightly regulated to avoid accumulation of misfolded aggregates. We found that the eIF2α kinase heme-regulated inhibitor (HRI) controls NOD1 signalosome folding and activation through a process requiring eukaryotic initiation factor 2α (eIF2α), the transcription factor ATF4, and the heat shock protein HSPB8. The HRI/eIF2α signaling axis was also essential for signaling downstream of the innate immune mediators NOD2, MAVS, and TRIF but dispensable for pathways dependent on MyD88 or STING. Moreover, filament-forming α-synuclein activated HRI-dependent responses, which suggests that the HRI pathway may restrict toxic oligomer formation. We propose that HRI, eIF2α, and HSPB8 define a novel cytosolic unfolded protein response (cUPR) essential for optimal innate immune signaling by large molecular platforms, functionally homologous to the PERK/eIF2α/HSPA5 axis of the endoplasmic reticulum UPR.


Assuntos
Citosol/enzimologia , Citosol/imunologia , Imunidade Inata , Proteínas Serina-Treonina Quinases/fisiologia , Resposta a Proteínas não Dobradas/imunologia , Fator 4 Ativador da Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Linhagem Celular , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos , Proteínas de Choque Térmico/metabolismo , Humanos , Listeria/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Chaperonas Moleculares/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Proteína Adaptadora de Sinalização NOD1/química , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteínas Serina-Treonina Quinases/genética , Salmonella/imunologia , Infecções por Salmonella , Shigella/imunologia , Transdução de Sinais
5.
Front Immunol ; 9: 1172, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915576

RESUMO

Bordetella pertussis is a Gram-negative bacterium and the causative agent of whooping cough. Whooping cough is currently re-emerging worldwide and, therefore, still poses a continuous global health threat. B. pertussis expresses several virulence factors that play a role in evading the human immune response. One of these virulence factors is virulence associated gene 8 (Vag8). Vag8 is a complement evasion molecule that mediates its effects by binding to the complement regulator C1 inhibitor (C1-INH). This regulatory protein is a fluid phase serine protease that controls proenzyme activation and enzyme activity of not only the complement system but also the contact system. Activation of the contact system results in the generation of bradykinin, a pro-inflammatory peptide. Here, the activation of the contact system by B. pertussis was explored. We demonstrate that recombinant as well as endogenous Vag8 enhanced contact system activity by binding C1-INH and attenuating its inhibitory function. Moreover, we show that B. pertussis itself is able to activate the contact system. This activation was dependent on Vag8 production as a Vag8 knockout B. pertussis strain was unable to activate the contact system. These findings show a previously overlooked interaction between the contact system and the respiratory pathogen B. pertussis. Activation of the contact system by B. pertussis may contribute to its pathogenicity and virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/fisiologia , Proteína Inibidora do Complemento C1/metabolismo , Sistemas de Secreção Tipo V/metabolismo , Fatores de Virulência/metabolismo , Coqueluche/imunologia , Adulto , Aderência Bacteriana/genética , Proteínas de Bactérias/genética , Bradicinina/metabolismo , Ativação do Complemento , Técnicas de Inativação de Genes , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Microrganismos Geneticamente Modificados , Ligação Proteica , Sistemas de Secreção Tipo V/genética , Fatores de Virulência/genética
6.
Sci Rep ; 8(1): 12039, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-30104573

RESUMO

Correlates of protection (CoPs) against the highly contagious respiratory disease whooping cough, caused by Bordetella pertussis, remain elusive. Characterizing the antibody response to this pathogen is essential towards identifying potential CoPs. Here, we evaluate levels, avidity and functionality of B. pertussis-specific-antibodies from paired plasma samples derived from symptomatic and recovered pertussis patients, as well as controls. Natural infection is expected to induce protective immunity. IgG levels and avidity to nine B. pertussis antigens were determined using a novel multiplex panel. Furthermore, opsonophagocytosis of a B. pertussis clinical isolate by neutrophils was measured. Findings indicate that following infection, B. pertussis-specific antibody levels of (ex-) pertussis patients waned, while the avidity of antibodies directed against the majority of studied antigens increased. Opsonophagocytosis indices decreased upon recovery, but remained higher than controls. Random forest analysis of all the data revealed that 28% of the opsonophagocytosis index variances could be explained by filamentous hemagglutinin- followed by pertussis toxin-specific antibodies. We propose to further explore which other B. pertussis-specific antibodies can better predict opsonophagocytosis. Moreover, other B. pertussis-specific antibody functions as well as the possible integration of these functions in combination with other immune cell properties should be evaluated towards the identification of CoPs against pertussis.


Assuntos
Anticorpos Antibacterianos/sangue , Bordetella pertussis/imunologia , Imunoglobulina G/sangue , Neutrófilos/imunologia , Toxina Pertussis/imunologia , Fagocitose/imunologia , Adolescente , Adulto , Idoso , Anticorpos Antibacterianos/imunologia , Afinidade de Anticorpos/imunologia , Antígenos de Bactérias/imunologia , Bordetella pertussis/classificação , Criança , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Coqueluche/imunologia , Adulto Jovem
7.
PLoS One ; 12(1): e0170027, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28076445

RESUMO

Vaccines against pertussis have been available for more than 60 years. Nonetheless, this highly contagious disease is reemerging even in countries with high vaccination coverage. Genetic changes of Bordetella pertussis over time have been suggested to contribute to the resurgence of pertussis, as these changes may favor escape from vaccine-induced immunity. Nonetheless, studies on the effects of these bacterial changes on the immune response are limited. Here, we characterize innate immune recognition and activation by a collection of genetically diverse B. pertussis strains isolated from Dutch pertussis patients before and after the introduction of the pertussis vaccines. For this purpose, we used HEK-Blue cells transfected with human pattern recognition receptors TLR2, TLR4, NOD2 and NOD1 as a high throughput system for screening innate immune recognition of more than 90 bacterial strains. Physiologically relevant human monocyte derived dendritic cells (moDC), purified from peripheral blood of healthy donors were also used. Findings indicate that, in addition to inducing TLR2 and TLR4 signaling, all B. pertussis strains activate the NOD-like receptor NOD2 but not NOD1. Furthermore, we observed a significant increase in TLR2 and NOD2, but not TLR4, activation by strains circulating after the introduction of pertussis vaccines. When using moDC, we observed that the recently circulating strains induced increased activation of these cells with a dominant IL-10 production. In addition, we observed an increased expression of surface markers including the regulatory molecule PD-L1. Expression of PD-L1 was decreased upon blocking TLR2. These in vitro findings suggest that emerging B. pertussis strains have evolved to dampen the vaccine-induced inflammatory response, which would benefit survival and transmission of this pathogen. Understanding how this disease has resurged in a highly vaccinated population is crucial for the design of improved vaccines against pertussis.


Assuntos
Bordetella pertussis/imunologia , Doenças Transmissíveis Emergentes/imunologia , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Receptor 2 Toll-Like/metabolismo , Coqueluche , Bordetella pertussis/isolamento & purificação , Células Cultivadas , Doenças Transmissíveis Emergentes/metabolismo , Doenças Transmissíveis Emergentes/prevenção & controle , Células Dendríticas/imunologia , Células HEK293 , Humanos , Proteína Adaptadora de Sinalização NOD2/metabolismo , Vacina contra Coqueluche/imunologia , Transdução de Sinais/imunologia , Vacinação , Coqueluche/imunologia , Coqueluche/metabolismo , Coqueluche/microbiologia , Coqueluche/prevenção & controle
8.
Front Microbiol ; 7: 2004, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066340

RESUMO

The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

9.
Sci Transl Med ; 6(232): 232ra52, 2014 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-24739760

RESUMO

Measles virus is a highly infectious morbillivirus responsible for major morbidity and mortality in unvaccinated humans. The related, zoonotic canine distemper virus (CDV) induces morbillivirus disease in ferrets with 100% lethality. We report an orally available, shelf-stable pan-morbillivirus inhibitor that targets the viral RNA polymerase. Prophylactic oral treatment of ferrets infected intranasally with a lethal CDV dose reduced viremia and prolonged survival. Ferrets infected with the same dose of virus that received post-infection treatment at the onset of viremia showed low-grade viral loads, remained asymptomatic, and recovered from infection, whereas control animals succumbed to the disease. Animals that recovered also mounted a robust immune response and were protected against rechallenge with a lethal CDV dose. Drug-resistant viral recombinants were generated and found to be attenuated and transmission-impaired compared to the genetic parent virus. These findings may pioneer a path toward an effective morbillivirus therapy that could aid measles eradication by synergizing with vaccination to close gaps in herd immunity due to vaccine refusal.


Assuntos
RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Infecções por Morbillivirus/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/uso terapêutico , Administração Oral , Animais , Chlorocebus aethiops , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Animais de Doenças , Vírus da Cinomose Canina/efeitos dos fármacos , Vírus da Cinomose Canina/enzimologia , Farmacorresistência Viral/efeitos dos fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Furões/virologia , Masculino , Infecções por Morbillivirus/virologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Resultado do Tratamento , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA