Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(13): 7570-7590, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212379

RESUMO

Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.


Assuntos
Alquil e Aril Transferases/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli , Códon , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Humanos , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Virulência
2.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948001

RESUMO

Decoding of genetic information into polypeptides occurs during translation, generally following the codon assignment rules of the organism's genetic code. However, recoding signals in certain mRNAs can overwrite the normal rules of translation. An exquisite example of this occurs during translation of selenoprotein mRNAs, wherein UGA codons are reassigned to encode for the 21st proteogenic amino acid, selenocysteine. In this review, we will examine what is known about the mechanisms of UGA recoding and discuss the fate of ribosomes that fail to incorporate selenocysteine.


Assuntos
Códon de Terminação/metabolismo , Ribossomos/metabolismo , Selenoproteínas/genética , Animais , Código Genético , Humanos , Biossíntese de Proteínas , Ribossomos/genética , Selenocisteína/metabolismo , Selenoproteínas/metabolismo
3.
J Biol Chem ; 294(39): 14185-14200, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31350336

RESUMO

Recoding of UGA codons as selenocysteine (Sec) codons in selenoproteins depends on a selenocysteine insertion sequence (SECIS) in the 3'-UTR of mRNAs of eukaryotic selenoproteins. SECIS-binding protein 2 (SECISBP2) increases the efficiency of this process. Pathogenic mutations in SECISBP2 reduce selenoprotein expression and lead to phenotypes associated with the reduction of deiodinase activities and selenoprotein N expression in humans. Two functions have been ascribed to SECISBP2: binding of SECIS elements in selenoprotein mRNAs and facilitation of co-translational Sec insertion. To separately probe both functions, we established here two mouse models carrying two pathogenic missense mutations in Secisbp2 previously identified in patients. We found that the C696R substitution in the RNA-binding domain abrogates SECIS binding and does not support selenoprotein translation above the level of a complete Secisbp2 null mutation. The R543Q missense substitution located in the selenocysteine insertion domain resulted in residual activity and caused reduced selenoprotein translation, as demonstrated by ribosomal profiling to determine the impact on UGA recoding in individual selenoproteins. We found, however, that the R543Q variant is thermally unstable in vitro and completely degraded in the mouse liver in vivo, while being partially functional in the brain. The moderate impairment of selenoprotein expression in neurons led to astrogliosis and transcriptional induction of genes associated with immune responses. We conclude that differential SECISBP2 protein stability in individual cell types may dictate clinical phenotypes to a much greater extent than molecular interactions involving a mutated amino acid in SECISBP2.


Assuntos
Erros Inatos do Metabolismo/genética , Mutação de Sentido Incorreto , Proteínas de Ligação a RNA/metabolismo , Selenoproteínas/biossíntese , Animais , Sítios de Ligação , Encéfalo/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Ligação Proteica , Estabilidade Proteica , Proteólise , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Selenocisteína/metabolismo
4.
RNA ; 23(8): 1285-1289, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28442579

RESUMO

Positioning test sequences between fused reporters permits monitoring of both translation levels and framing, before and after the test sequence. Many studies, including those on recoding such as productive ribosomal frameshifting and stop codon readthrough, use distinguishable luciferases or fluorescent proteins as reporters. Occasional distortions, due to test sequence product interference with the individual reporter activities or stabilities, are here shown to be avoidable by the introduction of tandem StopGo sequences (2A) flanking the test sequence. Using this new vector system (pSGDluc), we provide evidence for the use of a 3' stem-loop stimulator for ACP2 readthrough, but failed to detect the reported VEGFA readthrough.


Assuntos
Códon de Terminação/genética , Mudança da Fase de Leitura do Gene Ribossômico , Genes Reporter , Luciferases/metabolismo , Proteínas Luminescentes/análise , Fosfatase Ácida/genética , Fosfatase Ácida/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Vetores Genéticos , Células HEK293 , Humanos , Luciferases/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Nucleic Acids Res ; 45(22): 13004-13015, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29069514

RESUMO

Gene-specific expansion of the genetic code allows for UGA codons to specify the amino acid selenocysteine (Sec). A striking example of UGA redefinition occurs during translation of the mRNA coding for the selenium transport protein, selenoprotein P (SELENOP), which in vertebrates may contain up to 22 in-frame UGA codons. Sec incorporation at the first and downstream UGA codons occurs with variable efficiencies to control synthesis of full-length and truncated SELENOP isoforms. To address how the Selenop mRNA can direct dynamic codon redefinition in different regions of the same mRNA, we undertook a comprehensive search for phylogenetically conserved RNA structures and examined the function of these structures using cell-based assays, in vitro translation systems, and in vivo ribosome profiling of liver tissue from mice carrying genomic deletions of 3' UTR selenocysteine-insertion-sequences (SECIS1 and SECIS2). The data support a novel RNA structure near the start codon that impacts translation initiation, structures located adjacent to UGA codons, additional coding sequence regions necessary for efficient production of full-length SELENOP, and distinct roles for SECIS1 and SECIS2 at UGA codons. Our results uncover a remarkable diversity of RNA elements conducting multiple occurrences of UGA redefinition to control the synthesis of full-length and truncated SELENOP isoforms.


Assuntos
Códon de Iniciação/genética , Códon de Terminação/genética , Iniciação Traducional da Cadeia Peptídica , RNA Mensageiro/genética , Selenoproteína P/genética , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Humanos , Camundongos Endogâmicos C57BL , Conformação de Ácido Nucleico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteína P/metabolismo , Homologia de Sequência do Ácido Nucleico
6.
Nucleic Acids Res ; 45(7): 4094-4107, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27956496

RESUMO

Dual-assignment of codons as termination and elongation codons is used to expand the genetic code. In mammals, UGA can be reassigned to selenocysteine during translation of selenoproteins by a mechanism involving a 3΄ untranslated region (UTR) selenocysteine insertion sequence (SECIS) and the SECIS-binding protein Secisbp2. Here, we present data from ribosome profiling, RNA-Seq and mRNA half-life measurements that support distinct roles for Secisbp2 in UGA-redefinition and mRNA stability. Conditional deletions of the Secisbp2 and Trsp (tRNASec) genes in mouse liver were compared to determine if the effects of Secisbp2 loss on selenoprotein synthesis could be attributed entirely to the inability to incorporate Sec. As expected, tRNASec depletion resulted in loss of ribosome density downstream of all UGA-Sec codons. In contrast, the absence of Secisbp2 resulted in variable effects on ribosome density downstream of UGA-Sec codons that demonstrate gene-specific differences in Sec incorporation. For several selenoproteins in which loss of Secisbp2 resulted in greatly diminished mRNA levels, translational activity and Sec incorporation efficiency were shown to be unaffected on the remaining RNA. Collectively, these results demonstrate that Secisbp2 is not strictly required for Sec incorporation and has a distinct role in stabilizing mRNAs that can be separated from its effects on UGA-redefinition.


Assuntos
Códon de Terminação , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA de Transferência Aminoácido-Específico/genética , Proteínas de Ligação a RNA/fisiologia , Selenoproteínas/genética , Animais , Células Cultivadas , Hepatócitos/metabolismo , Masculino , Metilação , Camundongos , Camundongos Knockout , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA de Transferência Aminoácido-Específico/metabolismo , Proteínas de Ligação a RNA/genética , Ribossomos/metabolismo , Selenoproteínas/biossíntese
7.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27645994

RESUMO

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Assuntos
Selenoproteínas/classificação , Selenoproteínas/genética , Humanos , Terminologia como Assunto
8.
J Nutr ; 147(9): 1616-1623, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28615380

RESUMO

Background: Amino acids, especially leucine, are particularly effective in promoting protein synthesis. Leucine is known to increase the rate of protein synthesis in skeletal muscle through the mechanistic target of rapamycin complex 1-dependent, as well as -independent, signaling pathways. However, the overall translation program is poorly defined, and it is unknown how the activation of these pathways differentially controls the translation of specific mRNAs.Objective: Ribosome profiling and RNA sequencing were used to precisely define the translational program activated by an acute oral dose of leucine.Methods: Adult male C57BL/6 mice were deprived of food overnight before the delivery of an acute dose of l-leucine (9.4 mg) (n = 6) or vehicle (n = 5) and tissues collected 30 min later. Ribosome footprints and total RNA were isolated and subjected to deep sequencing. Changes in gene-specific mRNA abundance and ribosome occupancy were determined between the leucine-treated and control groups by aligning sequence reads to Reference Sequence database mRNAs and applying statistical features of the Bioconductor package edgeR.Results: Our data revealed mRNA features that confer translational control of skeletal muscle mRNAs in response to an acute dose of leucine. The subset of skeletal muscle mRNAs that are activated consists largely of terminal oligopyrimidine mRNAs (false discovery rate: <0.05), whereas those with reduced translation had 5' untranslated regions with increased length. Only the small nuclear RNAs, which are required for ribosome biogenesis, were significantly altered in RNA abundance. The inferred functional translational program activated by dietary leucine includes increased protein synthesis capacity and energy metabolism, upregulation of sarcomere-binding proteins, modulation of circadian rhythm, and suppression of select immune components.Conclusions: These results clarify the translation program acutely stimulated by leucine in mouse skeletal muscle and establish new methodologies for use in future studies of skeletal muscle disease or aging and further examination of downstream effects of leucine on gene expression.


Assuntos
Expressão Gênica/efeitos dos fármacos , Leucina/farmacologia , Proteínas Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Biossíntese de Proteínas/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Ribossomos/metabolismo , Animais , Ritmo Circadiano/genética , Dieta , Metabolismo Energético/genética , Imunidade/genética , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , RNA Mensageiro/metabolismo , Sarcômeros
9.
Proc Natl Acad Sci U S A ; 111(15): 5670-5, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706797

RESUMO

Aminoglycosides have been proposed as therapies for genetic disorders caused by nonsense mutations, because of their capacity to enhance translational read-through of premature termination codons (PTCs), thereby permitting expression of functional full-length protein. However, a potential consequence of this strategy is the development of an autoimmune response to HLA-presented epitopes encoded downstream of the PTC or other stop codons. Using a recombinant virus-expression system in tissue culture and in mice, we demonstrate that gentamicin can induce expression and MHC class I presentation of a model epitope encoded downstream of a PTC at levels sufficient to activate CD8(+) T cells. The degree of read-through-derived peptide presentation varies with the sequence of the stop codon and +1 nucleotide. Additionally, we applied a mass spectrometry exploration of the HLA class I peptide repertoire of gentamicin-treated cells and identified multiple peptides derived from read-through of conventional stop codons. These results substantiate the possibility of self-reactivity to cryptic epitopes revealed by stop codon read-through therapies and potentially other therapeutic approaches involving compounds that alter translational fidelity.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Gentamicinas/farmacologia , Oligopeptídeos/genética , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Regiões 3' não Traduzidas/genética , Animais , Anticorpos Monoclonais , Western Blotting , Linfócitos T CD8-Positivos/imunologia , Códon sem Sentido/genética , Epitopos de Linfócito T/imunologia , Regulação da Expressão Gênica/imunologia , Imunoprecipitação , Luciferases , Camundongos , Oligonucleotídeos/genética , Oligopeptídeos/metabolismo , Elongação Traducional da Cadeia Peptídica/genética , Espectrometria de Massas em Tandem
10.
Ann Neurol ; 77(4): 668-74, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25612243

RESUMO

OBJECTIVE: Exon-skipping therapies aim to convert Duchenne muscular dystrophy (DMD) into less severe Becker muscular dystrophy (BMD) by altering pre-mRNA splicing to restore an open reading frame, allowing translation of an internally deleted and partially functional dystrophin protein. The most common single exon deletion-exon 45 (Δ45)-may theoretically be treated by skipping of either flanking exon (44 or 46). We sought to predict the impact of these by assessing the clinical severity in dystrophinopathy patients. METHODS: Phenotypic data including clinical diagnosis, age at wheelchair use, age at loss of ambulation, and presence of cardiomyopathy were analyzed from 41 dystrophinopathy patients containing equivalent in-frame deletions. RESULTS: As expected, deletions of either exons 45 to 47 (Δ45-47) or exons 45 to 48 (Δ45-48) result in BMD in 97% (36 of 37) of subjects. Unexpectedly, deletion of exons 45 to 46 (Δ45-46) is associated with the more severe DMD phenotype in 4 of 4 subjects despite an in-frame transcript. Notably, no patients with a deletion of exons 44 to 45 (Δ44-45) were found within the United Dystrophinopathy Project database, and this mutation has only been reported twice before, which suggests an ascertainment bias attributable to a very mild phenotype. INTERPRETATION: The observation that Δ45-46 patients have typical DMD suggests that the conformation of the resultant protein may result in protein instability or altered binding of critical partners. We conclude that in DMD patients with Δ45, skipping of exon 44 and multiexon skipping of exons 46 and 47 (or exons 46-48) are better potential therapies than skipping of exon 46 alone.


Assuntos
Bases de Dados Genéticas , Éxons/genética , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Fenótipo , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular de Duchenne/diagnóstico , Valor Preditivo dos Testes , Resultado do Tratamento , Adulto Jovem
11.
Hum Mutat ; 35(2): 257-64, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24302611

RESUMO

Duchenne muscular dystrophy (DMD) is associated with the loss of dystrophin, which plays an important role in myofiber integrity via interactions with ß-dystroglycan and other members of the transmembrane dystrophin-associated protein complex. The ZZ domain, a cysteine-rich zinc-finger domain near the dystrophin C-terminus, is implicated in forming a stable interaction between dystrophin and ß-dystroglycan, but the mechanism of pathogenesis of ZZ missense mutations has remained unclear because not all such mutations have been shown to alter ß-dystroglycan binding in previous experimental systems. We engineered three ZZ mutations (p.Cys3313Phe, p.Asp3335His, and p.Cys3340Tyr) into a short construct similar to the Dp71 dystrophin isoform for in vitro and in vivo studies and delineated their effect on protein expression, folding properties, and binding partners. Our results demonstrate two distinct pathogenic mechanisms for ZZ missense mutations. The cysteine mutations result in diminished or absent subsarcolemmal expression because of protein instability, likely due to misfolding. In contrast, the aspartic acid mutation disrupts binding with ß-dystroglycan despite an almost normal expression at the membrane, confirming a role for the ZZ domain in ß-dystroglycan binding but surprisingly demonstrating that such binding is not required for subsarcolemmal localization of dystrophin, even in the absence of actin binding domains.


Assuntos
Distroglicanas/metabolismo , Distrofina/química , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Dedos de Zinco/genética , Actinas/metabolismo , Animais , Ácido Aspártico/genética , Cisteína/genética , Distrofina/metabolismo , Variação Genética , Humanos , Camundongos , Camundongos Transgênicos , Distrofia Muscular de Duchenne/patologia , Mutação de Sentido Incorreto , Dobramento de Proteína , Estabilidade Proteica
12.
J Biol Chem ; 288(27): 19401-13, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23696641

RESUMO

Incorporation of selenium into ~25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA([Ser]Sec) Um34 methylation. Furthermore, we find evidence for translation in the 5'-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins.


Assuntos
Códon de Terminação/metabolismo , Suplementos Nutricionais , Biossíntese de Proteínas/fisiologia , Selênio/farmacologia , Selenocisteína/metabolismo , Selenoproteínas/biossíntese , Animais , Códon de Terminação/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Biossíntese de Proteínas/efeitos dos fármacos , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Selenocisteína/genética
13.
Ann Neurol ; 73(4): 481-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23440719

RESUMO

OBJECTIVE: Duchenne muscular dystrophy (DMD) displays a clinical range that is not fully explained by the primary DMD mutations. Ltbp4, encoding latent transforming growth factor-ß binding protein 4, was previously discovered in a genome-wide scan as a modifier of murine muscular dystrophy. We sought to determine whether LTBP4 genotype influenced DMD severity in a large patient cohort. METHODS: We analyzed nonsynonymous single nucleotide polymorphisms (SNPs) from human LTBP4 in 254 nonambulatory subjects with known DMD mutations. These SNPs, V194I, T787A, T820A, and T1140M, form the VTTT and IAAM LTBP4 haplotypes. RESULTS: Individuals homozygous for the IAAM LTBP4 haplotype remained ambulatory significantly longer than those heterozygous or homozygous for the VTTT haplotype. Glucocorticoid-treated patients who were IAAM homozygotes lost ambulation at 12.5 ± 3.3 years compared to 10.7 ± 2.1 years for treated VTTT heterozygotes or homozygotes. IAAM fibroblasts exposed to transforming growth factor (TGF) ß displayed reduced phospho-SMAD signaling compared to VTTT fibroblasts, consistent with LTBP4' role as a regulator of TGFß. INTERPRETATION: LTBP4 haplotype influences age at loss of ambulation, and should be considered in the management of DMD patients.


Assuntos
Predisposição Genética para Doença/genética , Proteínas de Ligação a TGF-beta Latente/genética , Limitação da Mobilidade , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Testes Genéticos , Genótipo , Glucocorticoides/farmacologia , Humanos , Masculino , Distrofia Muscular de Duchenne/tratamento farmacológico , Proteínas Smad/metabolismo
14.
Nature ; 440(7086): 930-4, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16612383

RESUMO

It was reported over 65 years ago that chimpanzees, like humans, vary in taste sensitivity to the bitter compound phenylthiocarbamide (PTC). This was suggested to be the result of a shared balanced polymorphism, defining the first, and now classic, example of the effects of balancing selection in great apes. In humans, variable PTC sensitivity is largely controlled by the segregation of two common alleles at the TAS2R38 locus, which encode receptor variants with different ligand affinities. Here we show that PTC taste sensitivity in chimpanzees is also controlled by two common alleles of TAS2R38; however, neither of these alleles is shared with humans. Instead, a mutation of the initiation codon results in the use of an alternative downstream start codon and production of a truncated receptor variant that fails to respond to PTC in vitro. Association testing of PTC sensitivity in a cohort of captive chimpanzees confirmed that chimpanzee TAS2R38 genotype accurately predicts taster status in vivo. Therefore, although Fisher et al.'s observations were accurate, their explanation was wrong. Humans and chimpanzees share variable taste sensitivity to bitter compounds mediated by PTC receptor variants, but the molecular basis of this variation has arisen twice, independently, in the two species.


Assuntos
Evolução Biológica , Pan troglodytes/genética , Pan troglodytes/fisiologia , Feniltioureia/farmacologia , Paladar/fisiologia , Alelos , Animais , Sequência de Bases , Genótipo , Gorilla gorilla/genética , Gorilla gorilla/fisiologia , Humanos , Fenótipo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G , Paladar/efeitos dos fármacos
15.
Hum Mutat ; 32(3): 299-308, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21972111

RESUMO

Nonsense mutations are usually predicted to function as null alleles due to premature termination of protein translation. However, nonsense mutations in the DMD gene, encoding the dystrophin protein, have been associated with both the severe Duchenne Muscular Dystrophy (DMD) and milder Becker Muscular Dystrophy (BMD) phenotypes. In a large survey, we identified 243 unique nonsense mutations in the DMD gene, and for 210 of these we could establish definitive phenotypes. We analyzed the reading frame predicted by exons flanking those in which nonsense mutations were found, and present evidence that nonsense mutations resulting in BMD likely do so by inducing exon skipping, confirming that exonic point mutations affecting exon definition have played a significant role in determining phenotype. We present a new model based on the combination of exon definition and intronic splicing regulatory elements for the selective association of BMD nonsense mutations with a subset of DMD exons prone to mutation-induced exon skipping.


Assuntos
Códon sem Sentido , Distrofina/genética , Éxons , Distrofia Muscular de Duchenne/genética , Splicing de RNA , Feminino , Humanos , Masculino , Distrofia Muscular de Duchenne/metabolismo , Fenótipo , Splicing de RNA/genética
16.
Proc Natl Acad Sci U S A ; 105(34): 12485-90, 2008 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-18713863

RESUMO

Mutations affecting the seemingly unrelated gene products, SepN1, a selenoprotein of unknown function, and RyR1, the major component of the ryanodine receptor intracellular calcium release channel, result in an overlapping spectrum of congenital myopathies. To identify the immediate developmental and molecular roles of SepN and RyR in vivo, loss-of-function effects were analyzed in the zebrafish embryo. These studies demonstrate the two proteins are required for the same cellular differentiation events and are needed for normal calcium fluxes in the embryo. SepN is physically associated with RyRs and functions as a modifier of the RyR channel. In the absence of SepN, ryanodine receptors from zebrafish embryos or human diseased muscle have altered biochemical properties and have lost their normal sensitivity to redox conditions, which likely accounts for why mutations affecting either factor lead to similar diseases.


Assuntos
Desenvolvimento Muscular , Proteínas Musculares/fisiologia , Músculos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Selenoproteínas/fisiologia , Animais , Cálcio/metabolismo , Diferenciação Celular , Criança , Suscetibilidade a Doenças , Embrião não Mamífero , Feminino , Humanos , Dados de Sequência Molecular , Fibras Musculares de Contração Lenta , Músculos/citologia , Doenças Musculares , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Peixe-Zebra
17.
J Gerontol A Biol Sci Med Sci ; 76(12): 2112-2121, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33705535

RESUMO

Periods of inactivity experienced by older adults induce nutrient anabolic resistance creating a cascade of skeletal muscle transcriptional and translational aberrations contributing to muscle dysfunction. The purpose of this study was to identify how inactivity alters leucine-stimulated translation of molecules and pathways within the skeletal muscle of older adults. We performed ribosomal profiling alongside RNA sequencing from skeletal muscle biopsies taken from older adults (n = 8; ~72 years; 6 F/2 M) in response to a leucine bolus before (Active) and after (Reduced Activity) 2 weeks of reduced physical activity. At both visits, muscle biopsies were taken at baseline, 60 minutes (early response), and 180 minutes (late response) after leucine ingestion. Previously identified inactivity-related gene transcription changes (PFKFB3, GADD45A, NMRK2) were heightened by leucine with corresponding changes in translation. In contrast, leucine also stimulated translational efficiency of several transcripts in a manner not explained by corresponding changes in mRNA abundance ("uncoupled translation"). Inactivity eliminated this uncoupled translational response for several transcripts, and reduced the translation of most mRNAs encoding for ribosomal proteins. Ingenuity Pathway Analysis identified discordant circadian translation and transcription as a result of inactivity such as translation changes to PER2 and PER3 despite unchanged transcription. We demonstrate inactivity alters leucine-stimulated "uncoupled translation" of ribosomal proteins and circadian regulators otherwise not detectable by traditional RNA sequencing. Innovative techniques such as ribosomal profiling continues to further our understanding of how physical activity mediates translational regulation, and will set a path toward therapies that can restore optimal protein synthesis on the transcript-specific level to combat negative consequences of inactivity on aging muscle.


Assuntos
Exercício Físico , Músculo Esquelético , Proteínas Ribossômicas , Idoso , Feminino , Humanos , Leucina/farmacologia , Masculino , Músculo Esquelético/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/biossíntese , Ribossomos
18.
Nutrients ; 13(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668674

RESUMO

Cheddar cheese is a protein-dense whole food and high in leucine content. However, no information is known about the acute blood amino acid kinetics and protein anabolic effects in skeletal muscle in healthy adults. Therefore, we conducted a crossover study in which men and women (n = 24; ~27 years, ~23 kg/m2) consumed cheese (20 g protein) or an isonitrogenous amount of milk. Blood and skeletal muscle biopsies were taken before and during the post absorptive period following ingestion. We evaluated circulating essential and non-essential amino acids, insulin, and free fatty acids and examined skeletal muscle anabolism by mTORC1 cellular localization, intracellular signaling, and ribosomal profiling. We found that cheese ingestion had a slower yet more sustained branched-chain amino acid circulation appearance over the postprandial period peaking at ~120 min. Cheese also modestly stimulated mTORC1 signaling and increased membrane localization. Using ribosomal profiling we found that, though both milk and cheese stimulated a muscle anabolic program associated with mTORC1 signaling that was more evident with milk, mTORC1 signaling persisted with cheese while also inducing a lower insulinogenic response. We conclude that Cheddar cheese induced a sustained blood amino acid and moderate muscle mTORC1 response yet had a lower glycemic profile compared to milk.


Assuntos
Aminoácidos/sangue , Queijo , Ingestão de Alimentos/fisiologia , Músculo Esquelético/metabolismo , Adulto , Animais , Biópsia , Estudos Cross-Over , Ácidos Graxos não Esterificados/sangue , Feminino , Voluntários Saudáveis , Humanos , Insulina/sangue , Leucina/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Leite/metabolismo , Período Pós-Prandial , Ribossomos/metabolismo , Transdução de Sinais
19.
Biochem J ; 422(2): 321-8, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19522702

RESUMO

The natural polyamines are ubiquitous multifunctional organic cations which play important roles in regulating cellular proliferation and survival. Here we present a novel approach to investigating polyamine functions by using optical isomers of MeSpd (alpha-methylspermidine) and Me2Spm (alpha,omega-bismethylspermine), metabolically stable functional mimetics of natural polyamines. We studied the ability of MeSpd and Me2Spm to alter the normal polyamine regulation pathways at the level of polyamine uptake and the major control mechanisms known to affect the key polyamine metabolic enzymes. These include: (i) ODC (ornithine decarboxylase), which catalyses the rate-limiting step of polyamine synthesis; (ii) ODC antizyme, an inhibitor of ODC and polyamine uptake; (iii) SSAT (spermidine/spermine N1-acetyltransferase), the major polyamine catabolic enzyme; and (iv) AdoMetDC (S-adenosyl-L-methionine decarboxylase), which is required for the conversion of putrescine into spermidine, and spermidine into spermine. We show that the stereoisomers differ in their cellular uptake and ability to downregulate ODC and AdoMetDC, and to induce SSAT. These effects are mediated by the ability of the enantiomers to induce +1 ribosomal frameshifting on ODC antizyme mRNA, to suppress the translation of AdoMetDC uORF (upstream open reading frame) and to regulate the alternative splicing of SSAT pre-mRNA. The unique effects of chiral polyamine analogues on polyamine metabolism may offer novel possibilities for studying the physiological functions, control mechanisms, and targets of the natural polyamines, as well as advance therapeutic drug development in cancer and other human health-related issues.


Assuntos
Enzimas/química , Enzimas/metabolismo , Poliaminas/síntese química , Poliaminas/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Metilação de DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Enzimas/genética , Humanos , Camundongos , Poliaminas/farmacologia , Espermidina/análogos & derivados , Espermidina/química , Espermidina/metabolismo , Espermidina/farmacologia , Estereoisomerismo
20.
Hum Mutat ; 30(4): 633-40, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19206170

RESUMO

Mutations in the DMD gene result in two common phenotypes associated with progressive muscle weakness: the more severe Duchenne muscular dystrophy (DMD) and the milder Becker muscular dystrophy (BMD). We have previously identified a nonsense mutation (c.9G>A; p.Trp3X) within the first exon of the DMD gene, encoding the unique N-terminus of the 427-kDa muscle isoform of the dystrophin protein. Although this mutation would be expected to result in severe disease, the clinical phenotype is very mild BMD, with ambulation preserved into the seventh decade. We identify the molecular mechanism responsible for the amelioration of disease severity to be initiation of translation at two proximate AUG codons within exon 6. Analysis of large mutational data sets suggests that this may be a general mechanism of phenotypic rescue for point mutations within at least the first two exons of the DMD gene. Our results directly demonstrate, for the first time, the use of alternate translational initiation codons within the DMD gene, and suggest that dystrophin protein lacking amino acids encoded by the first five exons retains significant function.


Assuntos
Distrofina/genética , Éxons/genética , Mutação Puntual , Animais , Linhagem Celular , Códon de Iniciação/genética , Códon sem Sentido , Distrofina/metabolismo , Imunofluorescência , Humanos , Immunoblotting , Luciferases/genética , Luciferases/metabolismo , Músculos/metabolismo , Músculos/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Fenótipo , Biossíntese de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA