Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200452, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34565223

RESUMO

Agriculture is the largest single source of global anthropogenic methane (CH4) emissions, with ruminants the dominant contributor. Livestock CH4 emissions are projected to grow another 30% by 2050 under current policies, yet few countries have set targets or are implementing policies to reduce emissions in absolute terms. The reason for this limited ambition may be linked not only to the underpinning role of livestock for nutrition and livelihoods in many countries but also diverging perspectives on the importance of mitigating these emissions, given the short atmospheric lifetime of CH4. Here, we show that in mitigation pathways that limit warming to 1.5°C, which include cost-effective reductions from all emission sources, the contribution of future livestock CH4 emissions to global warming in 2050 is about one-third of that from future net carbon dioxide emissions. Future livestock CH4 emissions, therefore, significantly constrain the remaining carbon budget and the ability to meet stringent temperature limits. We review options to address livestock CH4 emissions through more efficient production, technological advances and demand-side changes, and their interactions with land-based carbon sequestration. We conclude that bringing livestock into mainstream mitigation policies, while recognizing their unique social, cultural and economic roles, would make an important contribution towards reaching the temperature goal of the Paris Agreement and is vital for a limit of 1.5°C. This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

3.
Int J Biometeorol ; 58(6): 1095-108, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23907174

RESUMO

The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity.


Assuntos
Mudança Climática , Transtornos de Estresse por Calor/prevenção & controle , Temperatura Alta/efeitos adversos , Umidade/efeitos adversos , Modelos Teóricos , Animais , Bovinos , Mudança Climática/história , Indústria de Laticínios/métodos , Previsões , Transtornos de Estresse por Calor/veterinária , História do Século XX , História do Século XXI , New South Wales
4.
J Environ Manage ; 124: 128-36, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23702285

RESUMO

This paper explores heuristic methods with potential to place the analytical power of real options analysis into the hands of natural resource managers. The complexity of real options analysis has led to patchy or ephemeral adoption even by corporate managers familiar with the financial-market origins of valuation methods. Intuitively accessible methods for estimating the value of real options have begun to evolve, but their evaluation has mostly been limited to researcher-driven applications. In this paper we work closely with Bush Heritage Australia to evaluate the potential of real options analysis to support the intuitive judgement of conservation estate managers in covenanting land with uncertain future conservation value due to climate change. The results show that modified decision trees have potential to estimate the option value of covenanting individual properties while time and ongoing research resolves their future conservation value. Complementing this, Luehrman's option space has potential to assist managers with limited budgets to increase the portfolio value of multiple properties with different conservation attributes.


Assuntos
Pessoal Administrativo , Conservação dos Recursos Naturais , Austrália
5.
Proc Biol Sci ; 279(1745): 4097-105, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-22874755

RESUMO

Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO(2)) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO(2) to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO(2) and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO(2) responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change.


Assuntos
Dióxido de Carbono/metabolismo , Mudança Climática , Produtos Agrícolas/fisiologia , Grão Comestível/fisiologia , Abastecimento de Alimentos , Aclimatação , Agricultura/tendências , Produtos Agrícolas/metabolismo , Grão Comestível/metabolismo , Fotossíntese , Seleção Genética , Especificidade da Espécie
6.
Philos Trans R Soc Lond B Biol Sci ; 363(1492): 789-813, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-17827109

RESUMO

Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively.


Assuntos
Agricultura/métodos , Criação de Animais Domésticos/métodos , Produtos Agrícolas/metabolismo , Ecossistema , Fontes Geradoras de Energia , Efeito Estufa , Agricultura/economia , Criação de Animais Domésticos/economia , Animais , Biomassa , Dióxido de Carbono/metabolismo , Análise Custo-Benefício , Fontes Geradoras de Energia/economia , Humanos , Esterco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA