Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479993

RESUMO

Neuroblastomas are childhood tumors with frequent fatal relapses after induction treatment, which is related to tumor evolution with additional genomic events. Our whole-genome sequencing data analysis revealed a high frequency of somatic cytosine > adenine (C > A) substitutions in primary neuroblastoma tumors, which was associated with poor survival. We showed that increased levels of C > A substitutions correlate with copy number loss (CNL) of OGG1 or MUTYH Both genes encode DNA glycosylases that recognize 8-oxo-guanine (8-oxoG) lesions as a first step of 8-oxoG repair. Tumor organoid models with CNL of OGG1 or MUTYH show increased 8-oxoG levels compared to wild-type cells. We used CRISPR-Cas9 genome editing to create knockout clones of MUTYH and OGG1 in neuroblastoma cells. Whole-genome sequencing of single-cell OGG1 and MUTYH knockout clones identified an increased accumulation of C > A substitutions. Mutational signature analysis of these OGG1 and MUTYH knockout clones revealed enrichment for C > A signatures 18 and 36, respectively. Clustering analysis showed that the knockout clones group together with tumors containing OGG1 or MUTYH CNL. In conclusion, we demonstrate that defects in 8-oxoG repair cause accumulation of C > A substitutions in neuroblastoma, which contributes to mutagenesis and tumor evolution.


Assuntos
Reparo do DNA/genética , Guanosina/análogos & derivados , Neuroblastoma/genética , Adenina/metabolismo , Criança , Citosina/metabolismo , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Feminino , Guanina/metabolismo , Guanosina/genética , Guanosina/metabolismo , Humanos , Masculino , Mutagênese , Recidiva Local de Neoplasia/genética , Neuroblastoma/metabolismo , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único/genética
2.
EJNMMI Res ; 5: 26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25932353

RESUMO

BACKGROUND: Positron emission tomography (PET) with (18)F-3'-deoxy-3'-fluorothymidine ([(18)F]FLT) can be used to assess tumour proliferation. A kinetic-filtering (KF) classification algorithm has been suggested for segmentation of tumours in dynamic [(18)F]FLT PET data. The aim of the present study was to evaluate KF segmentation and its test-retest performance in [(18)F]FLT PET in non-small cell lung cancer (NSCLC) patients. METHODS: Nine NSCLC patients underwent two 60-min dynamic [(18)F]FLT PET scans within 7 days prior to treatment. Dynamic scans were reconstructed with filtered back projection (FBP) as well as with ordered subsets expectation maximisation (OSEM). Twenty-eight lesions were identified by an experienced physician. Segmentation was performed using KF applied to the dynamic data set and a source-to-background corrected 50% threshold (A50%) was applied to the sum image of the last three frames (45- to 60-min p.i.). Furthermore, several adaptations of KF were tested. Both for KF and A50% test-retest (TRT) variability of metabolically active tumour volume and standard uptake value (SUV) were evaluated. RESULTS: KF performed better on OSEM- than on FBP-reconstructed PET images. The original KF implementation segmented 15 out of 28 lesions, whereas A50% segmented each lesion. Adapted KF versions, however, were able to segment 26 out of 28 lesions. In the best performing adapted versions, metabolically active tumour volume and SUV TRT variability was similar to those of A50%. KF misclassified certain tumour areas as vertebrae or liver tissue, which was shown to be related to heterogeneous [(18)F]FLT uptake areas within the tumour. CONCLUSIONS: For [(18)F]FLT PET studies in NSCLC patients, KF and A50% show comparable tumour volume segmentation performance. The KF method needs, however, a site-specific optimisation. The A50% is therefore a good alternative for tumour segmentation in NSCLC [(18)F]FLT PET studies in multicentre studies. Yet, it was observed that KF has the potential to subsegment lesions in high and low proliferative areas.

3.
J Nucl Med ; 55(9): 1417-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24970910

RESUMO

UNLABELLED: 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET/CT provides a noninvasive assessment of proliferation and, as such, could be a valuable imaging biomarker in oncology. The aim of the present study was to assess the validity of simplified quantitative parameters of (18)F-FLT uptake in non-small cell lung cancer (NSCLC) patients before and after the start of treatment with a tyrosine kinase inhibitor (TKI). METHODS: Ten patients with metastatic NSCLC harboring an activating epidermal growth factor receptor mutation were included in this prospective observational study. Patients underwent (15)O-H2O and (18)F-FLT PET/CT scanning on 3 separate occasions: within 7 d before treatment, and 7 and 28 d after the first therapeutic dose of a TKI (gefitinib or erlotinib). Dynamic scans were acquired and venous blood samples were collected during the (18)F-FLT scan to measure parent fraction and plasma and whole-blood radioactivity concentrations. Simplified measures (standardized uptake value [SUV] and tumor-to-blood ratio [TBR]) were correlated with fully quantitative measures derived from kinetic modeling. RESULTS: Twenty-nine of thirty (18)F-FLT PET/CT scans were evaluable. According to the Akaike criterion, a reversible 2-tissue model with 4 rate constants and blood volume parameter was preferred in 84% of cases. Relative therapy-induced changes in SUV and TBR correlated with those derived from kinetic analyses (r(2) = 0.83-0.97, P < 0.001, slope = 0.72-1.12). (18)F-FLT uptake significantly decreased at 7 and 28 d after the start of treatment compared with baseline (P < 0.01). Changes in (18)F-FLT uptake were not correlated with changes in perfusion, as measured using (15)O-H2O. CONCLUSION: SUV and TBR could both be used as surrogate simplified measures to assess changes in (18)F-FLT uptake in NSCLC patients treated with a TKI, at the cost of a small underestimation in uptake changes or the need for a blood sample and metabolite measurement, respectively.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Didesoxinucleosídeos , Receptores ErbB/genética , Radioisótopos de Flúor , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Compostos Radiofarmacêuticos , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Cintilografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA