Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806217

RESUMO

Neuroblastoma (NBL) is the most common extracranial childhood malignant tumor and represents a major cause of cancer-related deaths in infants. NMYC amplification or overexpression is associated with the malignant behavior of NBL tumors. In the present study, we revealed an association between long non-coding RNA (lncRNA) myocardial infarction associated transcript (MIAT) and NMYC amplification in NBL cell lines and MIAT expression in NBL tissue samples. MIAT silencing induces cell death only in cells with NMYC amplification, but in NBL cells without NMYC amplification it decreases only the proliferation. MIAT downregulation markedly reduces the NMYC expression in NMYC-amplified NBL cell lines and c-Myc expression in NMYC non-amplified NBL cell lines, but the ectopic overexpression or downregulation of NMYC did not affect the expression of MIAT. Moreover, MIAT downregulation results in decreased ornithine decarboxylase 1 (ODC1), a known transcriptional target of MYC oncogenes, and decreases the glycolytic metabolism and respiratory function. These results indicate that MIAT is an upstream regulator of NMYC and that MIAT/NMYC axis disruption induces cell death in NMYC-amplified NBL cell lines. These findings reveal a novel mechanism for the regulation of NMYC in NBL, suggesting that MIAT might be a potential therapeutic target, especially for those with NMYC amplification.


Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , RNA Longo não Codificante/metabolismo , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Perfilação da Expressão Gênica , Inativação Gênica , Glicólise , Humanos , RNA Longo não Codificante/genética
2.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923880

RESUMO

A tyrosine kinase inhibitor, vandetanib (Van), is an anticancer drug affecting the signaling of VEGFR, EGFR and RET protooncogenes. Van is primarily used for the treatment of advanced or metastatic medullary thyroid cancer; however, its usage is significantly limited by side effects, particularly cardiotoxicity. One approach to minimize them is the encapsulation or binding of Van in- or onto a suitable carrier, allowing targeted delivery to tumor tissue. Herein, we constructed a nanocarrier based on apoferritin associated with Van (ApoVan). Based on the characteristics obtained by analyzing the average size, the surface ζ-potential and the polydispersive index, ApoVan nanoparticles exhibit long-term stability and maintain their morphology. Experiments have shown that ApoVan complex is relatively stable during storage. It was found that Van is gradually released from its ApoVan form into the neutral environment (pH 7.4) as well as into the acidic environment (pH 6.5). The effect of free Van and ApoVan on neuroblastoma and medullary thyroid carcinoma cell lines revealed that both forms were toxic in both used cell lines, and minimal differences between ApoVan and Van were observed. Thus, we assume that Van might not be encapsulated into the cavity of apoferritin, but instead only binds to its surface.


Assuntos
Apoferritinas/química , Apoferritinas/farmacocinética , Piperidinas/química , Piperidinas/farmacocinética , Quinazolinas/química , Quinazolinas/farmacocinética , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas/química
3.
Int J Mol Sci ; 21(12)2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32575682

RESUMO

Resistance to chemotherapeutics and targeted drugs is one of the main problems in successful cancer therapy. Various mechanisms have been identified to contribute to drug resistance. One of those mechanisms is lysosome-mediated drug resistance. Lysosomes have been shown to trap certain hydrophobic weak base chemotherapeutics, as well as some tyrosine kinase inhibitors, thereby being sequestered away from their intracellular target site. Lysosomal sequestration is in most cases followed by the release of their content from the cell by exocytosis. Lysosomal accumulation of anticancer drugs is caused mainly by ion-trapping, but active transport of certain drugs into lysosomes was also described. Lysosomal low pH, which is necessary for ion-trapping is achieved by the activity of the V-ATPase. This sequestration can be successfully inhibited by lysosomotropic agents and V-ATPase inhibitors in experimental conditions. Clinical trials have been performed only with lysosomotropic drug chloroquine and their results were less successful. The aim of this review is to give an overview of lysosomal sequestration and expression of acidifying enzymes as yet not well known mechanism of cancer cell chemoresistance and about possibilities how to overcome this form of resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Lisossomos/enzimologia , Neoplasias/enzimologia , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Exocitose , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Lisossomos/efeitos dos fármacos , Neoplasias/tratamento farmacológico
4.
J Proteome Res ; 18(3): 1255-1263, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592607

RESUMO

Cisplatin (CDDP) is a widely used agent in the treatment of neuroblastoma. Unfortunately, the development of acquired chemoresistance limits its clinical use. To gain a detailed understanding of the mechanisms underlying the development of such chemoresistance, we comparatively analyzed established cisplatin-resistant neuroblastoma cell line (UKF-NB-4CDDP) and its sensitive counterpart (UKF-NB-4). First, using viability screenings, we confirmed the decreased sensitivity of tested cells to cisplatin and identified a cross-resistance to carboplatin and oxaliplatin. Then, the proteomic signatures were analyzed using nano liquid chromatography with tandem mass spectrometry. Among the proteins responsible for UKF-NB-4CDDP chemoresistance, ion channels transport family proteins, ATP-binding cassette superfamily proteins (ATP = adenosine triphosphate), solute carrier-mediated trans-membrane transporters, proteasome complex subunits, and V-ATPases were identified. Moreover, we detected markedly higher proteasome activity in UKF-NB-4CDDP cells and a remarkable lysosomal enrichment that can be inhibited by bafilomycin A to sensitize UKF-NB-4CDDP to CDDP. Our results indicate that lysosomal sequestration and proteasome activity may be one of the key mechanisms responsible for intrinsic chemoresistance of neuroblastoma to CDDP.


Assuntos
Cisplatino/farmacologia , Lisossomos/genética , Neuroblastoma/tratamento farmacológico , Proteômica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Complexo de Endopeptidases do Proteassoma/genética , Transcriptoma/genética
5.
Int J Cancer ; 144(2): 221-231, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30246379

RESUMO

Histone methylation is important in the regulation of genes expression, and thus its dysregulation has been observed in various cancers. KDM5 enzymes are capable of removing tri- and di- methyl marks from lysine 4 on histone H3 (H3K4) which makes them potential players in the downregulation of tumor suppressors, but could also suggest that their activity repress oncogenes. Depending on the methylation site, their effect on transcription can be either activating or repressing. There is emerging evidence for deregulation of KDM5A/B/C/D and important phenotypic consequences in various types of cancer. It has been suggested that the KDM5 family of demethylases plays a role in the appearance of drug tolerance. Drug resistance remains a challenge to successful cancer treatment. This review summarizes recent advances in understanding the functions of KDM5 histone demethylases in cancer chemoresistance and potential therapeutic targeting of these enzymes, which seems to prevent the emergence of a drug-resistant population.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Histona Desmetilases/metabolismo , Neoplasias/enzimologia , Animais , Humanos
6.
J Neurooncol ; 143(1): 15-25, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30827009

RESUMO

PURPOSE: The aim of this study was to test the possibility of using specimens obtained by a cavitron ultrasonic surgical aspirator (CUSA) in flow and mass cytometry investigations of pediatric brain tumors. METHODS: CUSA specimens obtained from 19 pediatric patients with brain tumors were investigated. Flow and mass cytometry methods were applied to analyze the composition of material collected using the CUSA. Cell suspensions were prepared from CUSA aspirates. Then sample viability was assessed by conventional flow cytometry and subsequently stained with a panel of 31 metal-labeled antibodies. RESULTS: Viability assessment was performed using conventional flow cytometry. Viability of cells in the acquired samples was below 50% in 16 of 19 cases. A mass cytometry investigation and subsequent analysis enabled us to discriminate brain tumor cells from contaminating leukocytes, whose proportions varied across the specimens. The addition of the viability marker cisplatin directly into the mass cytometry panel gave the means to selecting viable cells only for subsequent analyses. The proportion of non-viable cells was higher among tumor cells compared leukocytes. CONCLUSIONS: When the analysis of the tumor cell immunophenotype is performed with markers for determining viability, the expression of the investigated markers can be evaluated. Suitable markers can be selected by high-throughput methods, such as mass cytometry, and those that are diagnostically relevant can be investigated using flow cytometry, which is more flexible in terms of time.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patologia , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Sobrevivência Celular , Cisplatino/metabolismo , Citometria de Fluxo , Humanos , Leucócitos/metabolismo , Leucócitos/patologia , Procedimentos Neurocirúrgicos/instrumentação , Análise de Célula Única , Terapia por Ultrassom/instrumentação
7.
Int J Mol Sci ; 19(1)2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304031

RESUMO

Neuroblastoma (NBL) originates from undifferentiated cells of the sympathetic nervous system. Chemotherapy is judged to be suitable for successful treatment of this disease. Here, the influence of histone deacetylase (HDAC) inhibitor valproate (VPA) combined with DNA-damaging chemotherapeutic, ellipticine, on UKF-NB-4 and SH-SY5Y neuroblastoma cells was investigated. Treatment of these cells with ellipticine in combination with VPA led to the synergism of their anticancer efficacy. The effect is more pronounced in the UKF-NB-4 cell line, the line with N-myc amplification, than in SH-SY5Y cells. This was associated with caspase-3-dependent induction of apoptosis in UKF-NB-4 cells. The increase in cytotoxicity of ellipticine in UKF-NB-4 by VPA is dictated by the sequence of drug administration; the increased cytotoxicity was seen only after either simultaneous exposure to these drugs or after pretreatment of cells with ellipticine before their treatment with VPA. The synergism of treatment of cells with VPA and ellipticine seems to be connected with increased acetylation of histones H3 and H4. Further, co-treatment of cells with ellipticine and VPA increased the formation of ellipticine-derived DNA adducts, which indicates an easier accessibility of ellipticine to DNA in cells by its co-treatment with VPA and also resulted in higher ellipticine cytotoxicity. The results are promising for in vivo studies and perhaps later for clinical studies of combined treatment of children suffering from high-risk NBL.


Assuntos
Elipticinas/toxicidade , Inibidores de Histona Desacetilases/toxicidade , Mutagênicos/toxicidade , Neurônios/efeitos dos fármacos , Ácido Valproico/toxicidade , Apoptose , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Neuroblastoma/metabolismo , Neurônios/metabolismo
9.
Tumour Biol ; 39(9): 1010428317711656, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28945187

RESUMO

Neuroblastoma represents a malignancy of the sympathetic nervous system characteristic by biological heterogeneity. Thus, chemotherapy exhibits only low effectivity in curing high-risk forms. Previous studies revealed the cytotoxic potential of valproate on neuroblastoma cells. Nevertheless, these studies omitted effects of hypoxia, despite its undeniable tumorigenic role. In this study, we addressed the question whether valproate promotes binding of platinum-based anti-cancer drugs (cisplatin, carboplatin and oxaliplatin) to DNA and role of hypoxia, cellular antioxidant capacity and cisplatin resistance in this process. Following parameters differed significantly when cells were exposed to treatment with platinum-based drugs: elevation of platinum content bound to DNA, elevation of total thiol content, GSH/GSSG ratio, glutathione reductase and peroxidase, superoxide dismutase and elevation of antioxidant capacity. Hypoxia caused a decrease in cytosine/adenine peak, and no changes in platinum-DNA binding properties were observed. After valproate co-treatment, oxidative stress-related parameters and cytosine/adenine peak were only elevated. The amount of platinum bound to DNA was not changed significantly. Valproate is not able to enhance platinum binding to DNA in neuroblastoma cells, neither in case of intrinsic resistance (UKF-NB-4) nor in case of acquired resistance (UKF-NB-4CDDP). Therefore, another mechanism different from increase in platinum binding to DNA should be considered as a synergistic effect of valproate by cisplatin treatment.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neuroblastoma/patologia , Compostos de Platina/farmacologia , Ácido Valproico/farmacologia , Linhagem Celular Tumoral , DNA/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Estresse Oxidativo/efeitos dos fármacos
10.
Int J Mol Sci ; 18(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28671573

RESUMO

Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Acetilação/efeitos dos fármacos , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ensaios Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunomodulação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
11.
Electrophoresis ; 34(11): 1637-48, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23417248

RESUMO

In this study, we determined serum levels of metallothioneins (MTs) and zinc in children with solid tumours (neuroblastoma, Hodgkin lymphoma, medulloblastoma, osteosarcoma, Ewing sarcoma and nephroblastoma) by differential pulse voltammetry Brdicka reaction and ELISA. Zn(II) level in patients sera was 40% compared to controls, contrariwise, MT level was 4.2 × higher in patients. No significant differences among single diagnoses were found both for Zn(II) and MT. When determined Zn(II)/MT ratio, in controls its value was 24.6, but it was 2.6 in patients. After Western-blotting with anti-MT and anti-Zn chicken antibodies, variable intensities of the bands within the samples were observed. The brightness curve obtained for each sample both for MT- and Zn blots was further analysed to produce a list of band positions together with some complementary information related to the intensity of the observed bands by the optimised algorithm. We constructed from those profiles decision trees that enable to distinguish different groups of tumours. The blood samples were heat-treated, in which we supposed mainly MT, but samples contained other thermostable Zn-containing proteins that were helpful for identification of embryonal tumours with 88% accuracy and for identification of sarcomas with 78% accuracy. In MT blots the accuracies were 53 and 45%, respectively. Simultaneous analysis of MT and Zn blots did not increased accuracy of identification neither in embryonal tumours (80%) nor in sarcomas. Those results are promising not only from diagnostic point of view but particularly in the area of studying of individual MT isoforms and their aggregates in malignant tumours.


Assuntos
Western Blotting/métodos , Metalotioneína/sangue , Neoplasias/sangue , Neoplasias/diagnóstico , Zinco/análise , Algoritmos , Criança , Humanos
12.
Int J Mol Sci ; 14(6): 12170-85, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23743828

RESUMO

Metallothioneins (MT) are low molecular weight, cysteine-rich proteins maintaining metal ions homeostasis. They play a role in carcinogenesis and may also cause chemoresistance. The aim of the study was to explore the importance of MT serum levels in children suffering from malignant tumours. This prospective study involves examination of 865 samples from 172 patients with malignant tumours treated from 2008 to 2011 at University Hospital Motol. MT serum levels were determined using differential pulse voltammetry-Brdicka reaction. Mean MT level was 2.7 ± 0.5 µM. There was no statistically significant difference between MT levels in different tumours. We also did not find any correlation between MT levels and response to therapy or clinical stages. However, we found a positive correlation between MT levels and age (p = 0.009) and a negative correlation with absolute lymphocyte number (p = 0.001). The fact that patients who had early disease recurrence had lower MT levels during the treatment (complete remission 2.67 vs. recurring 2.34, p = 0.001) seems to be important for clinical practice. Accordingly we believe that there is benefit in further studies of serum MT levels in tumours.


Assuntos
Biomarcadores Tumorais/sangue , Metalotioneína/sangue , Neoplasias/sangue , Adolescente , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Neoplasias/tratamento farmacológico , Prognóstico
13.
Pharmaceutics ; 15(5)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37242640

RESUMO

Local chemotherapy using polymer drug delivery systems has the potential to treat some cancers, including intraocular retinoblastoma, which is difficult to treat with systemically delivered drugs. Well-designed carriers can provide the required drug concentration at the target site over a prolonged time, reduce the overall drug dose needed, and suppress severe side effects. Herein, nanofibrous carriers of the anticancer agent topotecan (TPT) with a multilayered structure composed of a TPT-loaded inner layer of poly(vinyl alcohol) (PVA) and outer covering layers of polyurethane (PUR) are proposed. Scanning electron microscopy showed homogeneous incorporation of TPT into the PVA nanofibers. HPLC-FLD proved the good loading efficiency of TPT (≥85%) with a content of the pharmacologically active lactone TPT of more than 97%. In vitro release experiments demonstrated that the PUR cover layers effectively reduced the initial burst release of hydrophilic TPT. In a 3-round experiment with human retinoblastoma cells (Y-79), TPT showed prolonged release from the sandwich-structured nanofibers compared with that from a PVA monolayer, with significantly enhanced cytotoxic effects as a result of an increase in the PUR layer thickness. The presented PUR-PVA/TPT-PUR nanofibers appear to be promising carriers of active TPT lactone that could be useful for local cancer therapy.

14.
Cancer Sci ; 103(2): 334-41, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22040216

RESUMO

Most high-risk neuroblastomas develop resistance to cytostatics and therefore there is a need to develop new drugs. In previous studies, we found that ellipticine induces apoptosis in human neuroblastoma cells. We also investigated whether ellipticine was able to induce resistance in the UKF-NB-4 neuroblastoma line and concluded that it may be possible after long-term treatment with increasing concentrations of ellipticine. The aim of the present study was to investigate the mechanisms responsible for ellipticine resistance. To elucidate the mechanisms involved, we used the ellipticine-resistant subline UKF-NB-4(ELLI) and performed comparative genomic hybridization, multicolor and interphase FISH, expression microarray, real-time RT-PCR, flow cytometry and western blotting analysis of proteins. On the basis of our results, it appears that ellipticine resistance in neuroblastoma is caused by a combination of overexpression of Bcl-2, efflux or degradation of the drug and downregulation of topoisomerases. Other mechanisms, such as upregulation of enzymes involved in oxidative phosphorylation, cellular respiration, V-ATPases, aerobic respiration or spermine synthetase, as well as reduced growth rate, may also be involved. Some changes are expressed at the DNA level, including gains, amplifications or deletions. The present study demonstrates that resistance to ellipticine is caused by a combination of mechanisms.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Elipticinas/farmacologia , Neuroblastoma/genética , Neuroblastoma/metabolismo , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , DNA Topoisomerases/biossíntese , Resistencia a Medicamentos Antineoplásicos/genética , Elipticinas/metabolismo , Citometria de Fluxo , Humanos , Hibridização in Situ Fluorescente , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Drug Metab Rev ; 44(4): 287-301, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23050852

RESUMO

Metallothioneins (MTs) are involved in protection against oxidative stress (OS) and toxic metals and they participate in zinc metabolism and its homeostasis. Disturbing of zinc homeostasis can lead to formation of reactive oxygen species, which can result in OS causing alterations in immunity, aging, and civilization diseases, but also in cancer development. It is not surprising that altered zinc metabolism and expression of MTs are of great interest in the case of studying of oncogenesis and cancer prognosis. The role of MTs and zinc in cancer development is tightly connected, and the structure and function of MTs are strongly dependent on Zn²âº redox state and its binding to proteins. Antiapoptic effects of MTs and their interactions with proteins nuclear factor kappa B, protein kinase C, esophageal cancer-related gene, and p53 as well as the role of MTs in their proliferation, immunomodulation, enzyme activation, and interaction with nitric oxide are reviewed. Utilization of MTs in cancer diagnosis and therapy is summarized and their importance for chemoresistance is also mentioned.


Assuntos
Metalotioneína/metabolismo , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Zinco/metabolismo , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Proliferação de Células/efeitos dos fármacos , Humanos , Imunomodulação , Metalotioneína/antagonistas & inibidores , Metalotioneína/sangue , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Prognóstico , Zinco/efeitos adversos , Zinco/deficiência
16.
Neuro Endocrinol Lett ; 33 Suppl 3: 16-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23353839

RESUMO

OBJECTIVES: Etoposide (Vepesid, VP-16), an inhibitor of topoisomerase II, is a chemotherapeutic drug commonly used for treatment of different types of malignant diseases. By inhibiting the topoisomerase II enzyme activity in cancer cells, this drug leads to DNA damage and subsequently to cell death. In this study, we investigated the effect of this anticancer drug alone and in combination with a histone deacetylase (HDAC) inhibitor, valproic acid (VPA), on a human UKF-NB-4 neuroblastoma cell line. METHODS: The effects of etoposide and VPA on UKF-NB-4 cells were tested under the normoxic and also the hypoxic (1% O2) cultivation conditions. The cytotoxicity of etoposide and VPA to a UKF-NB-4 neuroblastoma cell line was evaluated with MTT assay. Apoptosis of the cells was analyzed by flow cytometry using an Annexin V and propidium iodide binding method. The effect of etoposide and VPA on the cell cycle distribution was determined by flow cytometric analysis using propidium iodide staining. RESULTS: The results of the study demonstrate that UKF-NB-4 neuroblastoma cells are sensitive both to etoposide and to VPA. They also indicate that the impact of VPA on cytotoxicity of etoposide in these tumor cells varies depending on the sequence of cultivation of the cells with the drugs. As a suitable sequence of cultivation, with a high rate of suppression of neuroblastoma cell growth was found the preincubation of the cells with etoposide, which was followed by their cultivation with VPA. In contrast, the reversed combination (preincubation of the cells with VPA before their treating with etoposide) did not give any increase in etoposide cytotoxicity. The effect of such combined treatment can be explained by measuring the cell cycle distribution, which shows that both etoposide and VPA change the cell cycle phase distribution. CONCLUSION: Etoposide and VPA were found as cycle phase specific drugs that are cytotoxic to human UKF-NB-4 neuroblastoma cells used either as single drugs or both together. However, whereas VPA might sensitize the cells to etoposide, inappropriate sequence of cultivation of the cells with VPA can decrease the etoposide cytotoxic efficacy. The results found here warrant further studies of combined treatment of neuroblastoma cells with etoposide with HDAC inhibitors and may help in the design of new protocols geared to the treatment of high risk neuroblastomas.


Assuntos
Neoplasias da Medula Óssea/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Etoposídeo/farmacologia , Neuroblastoma/tratamento farmacológico , Ácido Valproico/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/toxicidade , Apoptose/efeitos dos fármacos , Neoplasias da Medula Óssea/epidemiologia , Neoplasias da Medula Óssea/secundário , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Etoposídeo/toxicidade , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/toxicidade , Humanos , Neuroblastoma/epidemiologia , Neuroblastoma/secundário , Fatores de Risco , Ácido Valproico/toxicidade
17.
Neuro Endocrinol Lett ; 32 Suppl 1: 101-16, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22167207

RESUMO

OBJECTIVES: Valproic acid (VPA) and trichostatin A (TSA) exert antitumor activity as histone deacetylase inhibitors, whereas ellipticine action is based mainly on DNA intercalation, inhibition of topoisomerase II and formation of cytochrome P450 (CYP)- and peroxidase-mediated covalent DNA adducts. This is the first report on the molecular mechanism of combined treatment of human neuroblastoma UKF-NB-3 and UKF-NB-4 cells with these compounds. METHODS: HPLC with UV detection was employed for the separation and characterization of ellipticine metabolites formed by microsomes and peroxidases. Covalent DNA modifications by ellipticine in neuroblastoma cells and in incubations with microsomes and peroxidases were detected by 32P-postlabeling. Expression of CYP enzymes, peroxidases and cytochrome b5 was examined by Western blot. RESULTS: The cytotoxicity of ellipticine to neuroblastomas was increased by pre-treating these cells with VPA or TSA. A higher sensitivity of cells to ellipticine correlated with an increase in formation of covalent ellipticine-derived DNA adducts in these cells. To evaluate the mechanisms of this finding, we investigated the modulation by VPA and TSA of CYP- and peroxidase-mediated ellipticine-derived DNA adduct formation in vitro. The effects of ellipticine in the presence of VPA and TSA on expression of CYPs and peroxidases relevant for ellipticine activation and levels of cytochrome b5 and P-glycoprotein in neuroblastoma cells were also investigated. Based on these studies, we attribute most of the enhancing effects of VPA and TSA on ellipticine cytotoxicity to enhanced ellipticine-DNA adduct formation caused by an increase in levels of cytochrome b5, CYP3A4 and CYP1A1 in neuroblastoma cells. A lower sensitivity of UKF-NB-4 cells to combined effects of ellipticine with VPA and TSA than of UKF-NB-3 cells is also attributable to high levels of P-glycoprotein expressed in this cell line. CONCLUSION: The results found here warrant further studies and may help in the design of new protocols geared to the treatment of high risk neuroblastomas.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Dano ao DNA , Elipticinas/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Neuroblastoma/tratamento farmacológico , Ácido Valproico/administração & dosagem , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Elipticinas/farmacologia , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Neuroblastoma/genética , Neuroblastoma/patologia , Ratos , Resultado do Tratamento , Células Tumorais Cultivadas , Ácido Valproico/farmacologia
18.
Int J Pharm ; 606: 120832, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34175379

RESUMO

Treatment of retinoblastoma (Rb) has greatly improved in recent years in terms of survival and eye salvage rates, using mainly intra-arterial or intravitreal chemotherapy. However, the treatment of vitreous tumor seeding still represents a challenge and it is of great interest to develop new strategies to deliver pharmacologically sufficient drug amounts to the vitreous humor. In the present work, we present a lens-shaped bi-layered hydrogel implant for delivery of topotecan (TPT) via transscleral diffusion. The implant consists of an inner TPT-loaded poly(2-hydroxyethyl methacrylate) (pHEMA) layer adjacent to the sclera and an outer covering poly(2-ethoxyethyl methacrylate) (pEOEMA) layer impermeable to TPT. TPT-loaded pHEMA samples exhibit long-lasting in vitro cytotoxicity against the Rb cell line Y79. In an in vivo experiment, pHEMA/pEOEMA implants are successfully surgically administered to the posterior segment of rabbit eyes. The determination of TPT pharmacokinetics demonstrates the attainment of promising levels of TPT (10 ng/ml) in vitreous humor 8 h after implant placement. The results from the pilot experiment constitute the proof of principle for the use of the proposed implants as a drug delivery system for the local treatment of intraocular diseases.


Assuntos
Neoplasias da Retina , Retinoblastoma , Animais , Hidrogéis , Coelhos , Topotecan , Corpo Vítreo
19.
Int J Mol Sci ; 11(12): 4826-42, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21614176

RESUMO

The drugs based on platinum metals represent one of the oldest, but also one of the most effective groups of chemotherapeutic agents. Thanks to many clinical studies it is known that resistance of tumor cells to drugs is a frequent cause of chemotherapy failure. With regard to platinum based drugs, multidrug resistance can also be connected with increased expression of low-molecular weight protein metallothionein (MT). This study aimed at investigating the interactions of MT with cisplatin or carboplatin, using the adsorptive transfer technique coupled with differential pulse voltammetry Brdicka reaction (AdTS DPV Brdicka reaction), and a comparison of in vitro results with results obtained in vivo. The results obtained from the in vitro study show a strong affinity between platinum based drugs and MT. Further, we analyzed extracts of neuroblastoma cell lines treated with cisplatin or carboplatin. It is clear that neuroblastoma UKF-NB-4 cisplatin-resistant and cisplatin-sensitive cell lines unlikely respond to the presence of the platinum-based cytostatics cisplatin and carboplatin. Finally, we determined the level of MT in samples from rabbits treated with carboplatin and patients with retinoblastoma treated with the same drug.


Assuntos
Antineoplásicos , Carboplatina , Cisplatino , Metalotioneína/metabolismo , Neuroblastoma , Retinoblastoma , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Carboplatina/farmacocinética , Carboplatina/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacocinética , Cisplatino/farmacologia , Humanos , Modelos Biológicos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Coelhos , Retinoblastoma/tratamento farmacológico , Retinoblastoma/metabolismo , Retinoblastoma/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-30967685

RESUMO

Cancer despite the introduction of new targeted therapy remains for many patients a fatal disease. Nanotechnology in cancer medicine has emerged as a promising approach to defeat cancer. Targeted delivery of anti-cancer drugs by different nanosystems promises enhanced drug efficacy, selectivity, better safety profile and reduced systemic toxicity. The article presents an overview of recent developments in cancer nanomedicine. We focus on approved anti-cancer medical products and on the results of clinical studies, highlighting that liposomal and micellar cytostatics or albumin-based nanoparticles have less side effects and are more efficient than "free" drugs. In addition, we discuss results of in vitro and in vivo preclinical studies with lipid, inorganic and polymer nanosystems loaded by anticancer drugs which according to our meaning are important for development of new nanodrugs. Pharmacokinetic characteristics of nanodrugs are discussed and characterization of major nanotechnology systems used for cancer nanomedicine is presented.


Assuntos
Antineoplásicos/administração & dosagem , Nanotecnologia , Neoplasias/tratamento farmacológico , Albuminas , Sistemas de Liberação de Medicamentos , Humanos , Lipossomos , Micelas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA