Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 38: 116130, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33848699

RESUMO

Protein-protein interactions (PPIs) are essentially fundamental to all cellular processes, so that developing small molecule inhibitors of PPIs have great significance despite representing a huge challenge. Studying PPIs with the help of peptide motifs could obtain the structural information and reference significance to reduce the difficulty in the development of small molecules. Computational methods are powerful tools to characterize peptide-protein interactions, especially molecular dynamics simulation and binding free energy calculation. Here, we established an affinity prediction model suitable for Casitas B lymphoma-b (Cbl-b) and phosphorylated motif system. According to the affinity data set of multiple truncated peptides, the force field, solvent model, and internal dielectric constant of molecular mechanics/generalized Born surface area (MM/GBSA) method were optimized. Further, we predicted the affinity of the rationally designed new sequences through this model and obtained a new 6-mer motif with a 7-fold increase in affinity and the comprehensive structure-activity relationship. Moreover, we proposed an insight of unexpected activity of the truncated 5-mer peptide and revealed the possible binding mode of the new highly active 6-mer motif by extended simulation. Our results showed that the activity enhancement of the truncated peptide was caused by the acetyl-mediated conformation change. The side chain of Arg and pTyr in the 6-mer motif co-occupied the site p1 to form numerous hydrogen bond interactions and increased hydrophobic interaction formed with Tyr266, leading to the higher affinity. The present work provided a reference to investigate the PPI of Cbl-b and phosphorylated substrates and guided the development of Cbl-b inhibitors.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-cbl/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Relação Dose-Resposta a Droga , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Estrutura Molecular , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-cbl/química , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
2.
J Med Chem ; 63(19): 11149-11168, 2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32902980

RESUMO

The Keap1 (Kelch-like ECH-associated protein 1)-Nrf2 (nuclear factor erythroid 2-related factor 2)-ARE (antioxidant response element) pathway is the major defending mechanism against oxidative stresses, and directly disrupting the Keap1-Nrf2 protein-protein interaction (PPI) has been an attractive strategy to target oxidative stress-related diseases, including cardiovascular diseases. Here, we describe the design, synthesis, and structure-activity relationships (SARs) of indoline-based compounds as potent Keap1-Nrf2 PPI inhibitors. Comprehensive SAR analysis and thermodynamics-guided optimization identified 19a as the most potent inhibitor in this series, with an IC50 of 22 nM in a competitive fluorescence polarization assay. Further evaluation indicated the proper drug-like properties of 19a. Compound 19a dose-dependently upregulated genes and protein level of Nrf2 as well as its downstream markers and showed protective effects against lipopolysaccharide-induced injury in both H9c2 cardiac cells and mouse models. Collectively, we reported here a novel indoline-based Keap1-Nrf2 PPI inhibitor as a potential cardioprotective agent.


Assuntos
Cardiotônicos/farmacologia , Desenho de Fármacos , Indóis/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Ligação Proteica , Relação Estrutura-Atividade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA