Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(45)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39111341

RESUMO

The chromium crystal doped with119Sn isotope was studied using the nuclear resonance inelastic x-ray scattering and first principles calculations. The Sn partial phonon density of states (PDOS) was obtained for three temperatures that correspond to different magnetic states of Cr. At all temperatures, the energy spectrum consists of a broad band around 18 meV and a narrow peak at 43 meV. The additional peak around 39 meV is observed only in the magnetically ordered phases, indicating the influence of magnetic order in chromium on lattice dynamics. The partial PDOS calculated with the antiferromagnetic order on Cr atoms show a very good agreement with the experimental data. It is revealed that the high-energy peak is lying above the phonon spectra of the pure bcc-Cr crystal. These are the local modes with the increased energies due to a strongly reduced distance between Sn and the nearest-neighbor Cr atoms.

2.
Dalton Trans ; 53(33): 13906-13924, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39093017

RESUMO

C-Nitroso compounds (RNO, R = alkyl and aryl) are byproducts of drug metabolism and bind to heme proteins, and their heme-RNO adducts are isoelectronic to ferrous nitroxyl (NO-/HNO) complexes. Importantly, heme-HNO compounds are key intermediates in the reduction of NO to N2O and nitrite to ammonium in the nitrogen cycle. Ferrous heme-RNO complexes act as stable analogs of these species, potentially allowing for the investigation of the vibrational and electronic properties of unstable heme-HNO intermediates. In this paper, a series of six-coordinate ferrous heme-RNO complexes (where R = iPr and Ph) were prepared using the TPP2- and 3,5-Me-BAFP2- co-ligands, and tetrahydrofuran, pyridine, and 1-methylimidazole as the axial ligands (bound trans to RNO). These complexes were characterized using different spectroscopic methods and X-ray crystallography. The complex [Fe(TPP)(THF)(iPrNO)] was further utilized for nuclear resonance vibrational spectroscopy (NRVS), allowing for the detailed assignment of the Fe-N(R)O vibrations of a heme-RNO complex for the first time. The vibrational properties of these species were then correlated with those of their HNO analogs, using DFT calculations. Our studies support previous findings that RNO ligands in ferrous heme complexes do not elicit a significant trans effect. In addition, the complexes are air-stable, and do not show any reactivity of their RNO ligands towards NO. So although ferrous heme-RNO complexes are suitable structural and electronic models for their HNO analogs, they are unsuitable to model the reactivity of heme-HNO complexes. We further investigated the reaction of our heme-RNO complexes with different Lewis acids. Here, [Fe(TPP)(THF)(iPrNO)] was found to be unreactive towards Lewis acids. In contrast, [Fe(3,5-Me-BAFP)(iPrNO)2] is reactive towards all of the Lewis acids investigated here, but in most cases the iron center is simply oxidized, resulting in the loss of the iPrNO ligand. In the case of the Lewis acid B2(pin)2, the reduced product [Fe(3,5-Me-BAFP)(iPrNH2)(iPrNO)] was identified by X-ray crystallography.


Assuntos
Heme , Ácidos de Lewis , Óxido Nítrico , Compostos Nitrosos , Óxido Nítrico/química , Heme/química , Ácidos de Lewis/química , Compostos Nitrosos/química , Vibração , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Modelos Moleculares , Cristalografia por Raios X , Estrutura Molecular , Compostos Ferrosos/química , Ligantes , Conformação Molecular , Óxidos de Nitrogênio
3.
Sci Rep ; 14(1): 12197, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806591

RESUMO

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Assuntos
Extremófilos , Ferro , Rubredoxinas , Ferro/metabolismo , Ferro/química , Extremófilos/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo , Simulação de Dinâmica Molecular , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA