Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(29): e2406337121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985759

RESUMO

Unlike inorganic nanoparticles, organic nanoparticles (oNPs) offer the advantage of "interior tailorability," thereby enabling the controlled variation of physicochemical characteristics and functionalities, for example, by incorporation of diverse functional small molecules. In this study, a unique inimer-based microemulsion approach is presented to realize oNPs with enhanced control of chemical and mechanical properties by deliberate variation of the degree of hyperbranching or cross-linking. The use of anionic cosurfactants led to oNPs with superior uniformity. Benefitting from the high initiator concentration from inimer and preserved chain-end functionality during atom transfer radical polymerization (ATRP), the capability of oNPs as a multifunctional macroinitiator for the subsequent surface-initiated ATRP was demonstrated. This facilitated the synthesis of densely tethered poly(methyl methacrylate) brush oNPs. Detailed analysis revealed that exceptionally high grafting densities (~1 nm-2) were attributable to multilayer surface grafting from oNPs due to the hyperbranched macromolecular architecture. The ability to control functional attributes along with elastic properties renders this "bottom-up" synthetic strategy of macroinitiator-type oNPs a unique platform for realizing functional materials with a broad spectrum of applications.

2.
J Am Chem Soc ; 146(19): 13417-13426, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691625

RESUMO

Photoinduced polymerization techniques have gathered significant attention due to their mild conditions, spatiotemporal control, and simple setup. In addition to homogeneous media, efforts have been made to implement photopolymerization in emulsions as a practical and greener process. However, previous photoinduced reversible deactivation radical polymerization (RDRP) in heterogeneous media has relied on short-wavelength lights, which have limited penetration depth, resulting in slow polymerization and relatively poor control. In this study, we demonstrate the first example of a highly efficient photoinduced miniemulsion ATRP in the open air driven by red or near-infrared (NIR) light. This was facilitated by the utilization of a water-soluble photocatalyst, methylene blue (MB+). Irradiation by red/NIR light allowed for efficient excitation of MB+ and subsequent photoreduction of the ATRP deactivator in the presence of water-soluble electron donors to initiate and mediate the polymerization process. The NIR light-driven miniemulsion photoATRP provided a successful synthesis of polymers with low dispersity (1.09 ≤ D ≤ 1.29) and quantitative conversion within an hour. This study further explored the impact of light penetration on polymerization kinetics in reactors of varying sizes and a large-scale reaction (250 mL), highlighting the advantages of longer-wavelength light, particularly NIR light, for large-scale polymerization in dispersed media owing to its superior penetration. This work opens new avenues for robust emulsion photopolymerization techniques, offering a greener and more practical approach with improved control and efficiency.

3.
J Am Chem Soc ; 146(19): 13598-13606, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691811

RESUMO

Nucleic acid-binding dyes (NuABDs) are fluorogenic probes that light up after binding to nucleic acids. Taking advantage of their fluorogenicity, NuABDs have been widely utilized in the fields of nanotechnology and biotechnology for diagnostic and analytical applications. We demonstrate the potential of NuABDs together with an appropriate nucleic acid scaffold as an intriguing photocatalyst for precisely controlled atom-transfer radical polymerization (ATRP). Additionally, we systematically investigated the thermodynamic and electrochemical properties of the dyes, providing insights into the mechanism that drives the photopolymerization. The versatility of the NuABD-based platform was also demonstrated through successful polymerizations using several NuABDs in conjunction with diverse nucleic acid scaffolds, such as G-quadruplex DNA or DNA nanoflowers. This study not only extends the horizons of controlled photopolymerization but also broadens opportunities for nucleic acid-based materials and technologies, including nucleic acid-polymer biohybrids and stimuli-responsive ATRP platforms.


Assuntos
Corantes Fluorescentes , Processos Fotoquímicos , Polimerização , Catálise , Corantes Fluorescentes/química , Radicais Livres/química , DNA/química , Ácidos Nucleicos/química , Quadruplex G
4.
BMC Womens Health ; 24(1): 38, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218823

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) can improve survivals of metastatic triple negative breast cancer (mTNBC); however, we still seek circulating blood biomarkers to predict the efficacy of ICIs. MATERIALS AND METHODS: In this study, we analyzed the data of ICIs treated mTNBC collected in Anhui Medical University affiliated hospitals from 2018 to 2023. The counts of lymphocytes, monocytes, platelets, and ratio indexes (NLR, MLR, PLR) in peripheral blood were investigated via the Kaplan-Meier curves and the Cox proportional-hazards model. RESULTS: The total of 50 mTNBC patients were treated with ICIs. High level of peripheral lymphocytes and low level of NLR and MLR at baseline and post the first cycle of ICIs play the predictable role of immunotherapies. Lymphocytes counts (HR = 0.280; 95% CI: 0.095-0.823; p = 0.021) and NLR (HR = 1.150; 95% CI: 1.052-1.257; p = 0.002) are significantly correlated with overall survival. High NLR also increases the risk of disease progression (HR = 2.189; 95% CI:1.085-4.414; p = 0.029). When NLR at baseline ≥ 2.75, the hazard of death (HR = 2.575; 95% CI:1.217-5.447; p = 0.013) and disease progression (HR = 2.189; 95% CI: 1.085-4.414; p = 0.029) significantly rise. HER-2 expression and anti-tumor therapy lines are statistically correlated with survivals. CONCLUSIONS: Before the initiation of ICIs, enriched peripheral lymphocytes and poor neutrophils and NLR contribute to the prediction of survivals.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Prognóstico , Biomarcadores , Linfócitos/patologia , Progressão da Doença , Estudos Retrospectivos , Biomarcadores Tumorais
5.
J Am Chem Soc ; 145(26): 14435-14445, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37357749

RESUMO

Combining synthetic polymers with RNA paves the way for creating RNA-based materials with non-canonical functions. We have developed an acylation reagent that allows for direct incorporation of the atom transfer radical polymerization (ATRP) initiator into both short synthetic oligoribonucleotides and natural biomass RNA extracted from torula yeast. The acylation was performed in a quantitative yield. The resulting initiator-functionalized RNAs were used for grafting polymer chains from the RNA by photoinduced ATRP, resulting in RNA-polymer hybrids with narrow molecular weight distributions. The RNA initiator was used for the polymerization of oligo(ethylene oxide) methyl ether methacrylate, poly(ethylene glycol) dimethacrylate, and N-isopropylacrylamide monomers, resulting in RNA bottlebrushes, hydrogels, and stimuli-responsive materials. This approach, readily applicable to both post-synthetic and nature-derived RNA, can be used to engineer the properties of a variety of RNA-based macromolecular hybrids and assemblies providing access to a wide variety of RNA-polymer hybrids.


Assuntos
Polietilenoglicóis , Polímeros , Polimerização , Metacrilatos
6.
J Am Chem Soc ; 145(44): 24315-24327, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37878520

RESUMO

Photoinduced reversible-deactivation radical polymerization (photo-RDRP) techniques offer exceptional control over polymerization, providing access to well-defined polymers and hybrid materials with complex architectures. However, most photo-RDRP methods rely on UV/visible light or photoredox catalysts (PCs), which require complex multistep synthesis. Herein, we present the first example of fully oxygen-tolerant red/NIR-light-mediated photoinduced atom transfer radical polymerization (photo-ATRP) in a high-throughput manner under biologically relevant conditions. The method uses commercially available methylene blue (MB+) as the PC and [X-CuII/TPMA]+ (TPMA = tris(2-pyridylmethyl)amine) complex as the deactivator. The mechanistic study revealed that MB+ undergoes a reductive quenching cycle in the presence of the TPMA ligand used in excess. The formed semireduced MB (MB•) sustains polymerization by regenerating the [CuI/TPMA]+ activator and together with [X-CuII/TPMA]+ provides control over the polymerization. This dual catalytic system exhibited excellent oxygen tolerance, enabling polymerizations with high monomer conversions (>90%) in less than 60 min at low volumes (50-250 µL) and high-throughput synthesis of a library of well-defined polymers and DNA-polymer bioconjugates with narrow molecular weight distributions (D < 1.30) in an open-air 96-well plate. In addition, the broad absorption spectrum of MB+ allowed ATRP to be triggered under UV to NIR irradiation (395-730 nm). This opens avenues for the integration of orthogonal photoinduced reactions. Finally, the MB+/Cu catalysis showed good biocompatibility during polymerization in the presence of cells, which expands the potential applications of this method.

7.
BMC Med ; 21(1): 459, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996817

RESUMO

BACKGROUND: AD16 is a Class 1.1 new drug candidate for Alzheimer's disease (AD), which has demonstrated potential benefits in AD by reducing neuroinflammation in preclinical studies. Herein, the pharmacokinetics (PK), safety, and tolerability of single and multiple-dose AD16 and the effect of food were assessed in healthy Chinese adults. METHODS: Single-center, randomized, placebo-controlled, double-blind studies were conducted for single and multiple ascending doses. A total of 62 subjects were enrolled in single-dose groups; 10 each in 5, 10, 20, 30, and 40 mg groups, and 6 each in 60 and 80 mg dose groups. Twenty subjects were divided equally into 30 and 40 mg groups for the multiple-dose study. To determine the effect of a high-fat diet on AD16, 16 subjects were administered a single 20 mg dose of AD16 under the fasted and fed condition in a single-center, randomized, open-label, two-cycle, two-crossover study. Moreover, safety and PK parameters were also assessed. RESULTS: Plasma exposure to a single oral dose of AD16 increased at an approximate dose-increasing rate. The pharmacodynamic dose of the AD16 can be maintained through the accumulation effect of the drug within the safety window. Compared to fasting, ingesting a high-fat meal decelerated the rate of AD16 absorption, albeit without effect on its overall absorption. No dose-related toxicities were seen in any of the studies, all treatment-emergent adverse events were grade I/II, and no serious adverse event occurred. CONCLUSIONS: The present study exhibited favorable safety, tolerability, and PK profile of AD16, supporting its further research as a potential drug treatment for AD. TRIAL REGISTRATION: ClinicalTrials.gov; NCT05787028, NCT05787041, NCT05806177. The SAD and FE studies were retrospectively registered on 28 March 2023. The MAD study was retrospectively registered on 10 April 2023.


Assuntos
Doença de Alzheimer , Adulto , Humanos , Doença de Alzheimer/tratamento farmacológico , Estudos Cross-Over , Doenças Neuroinflamatórias , Jejum , Método Duplo-Cego , Relação Dose-Resposta a Droga , Área Sob a Curva , Administração Oral
8.
Langmuir ; 39(22): 7741-7758, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216597

RESUMO

Star polymers have been gaining interest due to their tunable properties. They have been used as effective stabilizers for Pickering emulsions. Herein, star polymers were synthesized via activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP). Poly(ethylene oxide) (PEO) with terminal α-bromoisobutyrate ATRP functionality was used as a macroinitiator and divinylbenzene as a crosslinker for the arm-first star synthesis. Stars with PEO arms with a molar mass of either 2 or 5 kDa had a relatively low density of grafted chains, i.e., ca. 0.25 chain/nm2. The properties of PEO stars adsorbed at oil-water interfaces were investigated using interfacial tension and interfacial rheology. The magnitude of interfacial tensions at oil-water interfaces depends on the nature of the oil phase, being lower at the m-xylene/water interface than at the n-dodecane/water interface. Small differences were observed for stars with different molecular weights of PEO arms. The overall behavior of PEO stars adsorbed at an interface can be considered as an intermediate between a particle and a linear/branched polymer. Obtained results offer an important insight into the interfacial rheology of PEO star polymers in the context of their application as stabilizers for Pickering emulsions.

9.
Br J Clin Pharmacol ; 89(6): 1767-1779, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36458825

RESUMO

AIMS: A phase I open-label study assessed the effect of multiple oral doses of a potent CYP3A4 inhibitor (itraconazole) and inducer (rifampicin) on the pharmacokinetic profile of a single oral dose of senaparib, a novel, highly potent poly-(ADP-ribose) polymerase 1/2 inhibitor and CYP3A4 substrate, in Chinese healthy male volunteers (HMV). METHODS: Adult HMV were enrolled to the itraconazole or rifampicin group (n = 16 each). In Period 1, all participants received a single oral dose of senaparib 40 mg (itraconazole group) or 100 mg (rifampicin group). In Period 2, the same dose was coadministered with itraconazole (200 mg) and rifampicin (600 mg), respectively. The primary endpoints were senaparib exposure parameters. RESULTS: Coadministration with itraconazole significantly increased exposure of senaparib and decreased that of its major metabolites M9 and M14. Maximum plasma senaparib concentration (Cmax ) was increased by ~79% and area under the concentration-time curve (AUC) increased by ~2.8-fold. Coadministration with rifampicin significantly reduced the Cmax and AUC of senaparib by ~59 and 83%, respectively. The Cmax for both M9 and M14 was slightly increased, although AUC was decreased. All treatment-emergent adverse events were grade ≤2, regardless of the treatment administered. CONCLUSION: In Chinese HMV, the exposure of senaparib was significantly increased when coadministered with itraconazole and significantly decreased when coadministered with rifampicin. It is recommended to avoid concomitant use of senaparib and strong inhibitors or inducers of CYP3A4.


Assuntos
Antineoplásicos , Inibidores do Citocromo P-450 CYP3A , Adulto , Humanos , Masculino , Inibidores do Citocromo P-450 CYP3A/farmacologia , Itraconazol/efeitos adversos , Rifampina/efeitos adversos , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Inibidores de Poli(ADP-Ribose) Polimerases
10.
Macromol Rapid Commun ; 44(16): e2200855, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36471106

RESUMO

Atom transfer radical polymerization (ATRP) of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA500 ) in water is enabled using CuBr2 with tris(2-pyridylmethyl)amine (TPMA) as a ligand under blue or green-light irradiation without requiring any additional reagent, such as a photo-reductant, or the need for prior deoxygenation. Polymers with low dispersity (D = 1.18-1.25) are synthesized at high conversion (>95%) using TPMA from three different suppliers, while no polymerization occurred with TPMA is synthesized and purified in the laboratory. Based on spectroscopic studies, it is proposed that TPMA impurities (i.e., imine and nitrone dipyridine), which absorb blue and green light, can act as photosensitive co-catalyst(s) in a light region where neither pure TPMA nor [(TPMA)CuBr]+ absorbs light.


Assuntos
Aminas , Polímeros , Polímeros/química , Metacrilatos/química , Luz
11.
Platelets ; 34(1): 2200860, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37070954

RESUMO

Clopidogrel combined with aspirin is widely used in coronary artery disease (CAD) patients, while some patients exhibit high platelet activity when receiving the combined treatment. Current environmental and genetic factors could only explain part of the variability in clopidogrel efficacy. Human platelets harbor abundant miRNAs which might affect clopidogrel efficacy by regulating the expression of key proteins in the clopidogrel antiplatelet signaling pathway. This study aimed to investigate the association between platelet miRNA levels and clopidogrel efficacy. Here we recruited 508 CAD patients who underwent clopidogrel antiplatelet therapy and determined the platelet reactivity index (PRI) to evaluate antiplatelet reactivity responses to clopidogrel. Subsequently, 22 patients with extreme clopidogrel response were selected for platelet small RNA sequencing. Another 41 CAD patients taking clopidogrel were collected to verify the differentially expressed candidate miRNAs. We found the metabolic types of the CYP2C19 enzyme (based on CYP2C19 * 2 and * 3 polymorphisms) could significantly affect the PRI of CAD patients with or without percutaneous coronary intervention (PCI) in Chinese. A total of 43 miRNAs were differentially expressed in the platelets from the 22 extreme clopidogrel response samples, and 109 miRNAs were differentially expressed in the 13 CYP2C19 extensive metabolizers with extreme clopidogrel response. Platelet miR-199a-5p levels were correlated negatively with PRI after clopidogrel therapy. Studies in cultured cells revealed that miR-199a-5p inhibited the expression of VASP, a key effector protein downstream of the P2Y12 receptor. In conclusion, we found the expression of VASP could be inhibited by miR-199a-5p, and decreased platelet miR-199a-5p was associated with high on-clopidogrel platelet reactivity in CAD patients.


What is the context?● Clopidogrel combined with aspirin is widely used in coronary artery disease (CAD) patients, while some patients exhibit high platelet activity when receiving the combined treatment.● Current environmental and genetic factors could only explain part of the variability in clopidogrel efficacy.● Human platelets harbor abundant miRNAs which might affect clopidogrel efficacy by regulating the expression of key proteins in the clopidogrel antiplatelet signaling pathway.What is new?● We found that decreased platelet miR-199a-5p level was associated with high on-clopidogrel platelet reactivity.● Overexpression of miR-199a-5p significantly down-regulated the expression of VASP protein in cultured cells.What is the impact?● The current study provided new insights into the exploration of interindividual variability in clopidogrel response from the perspective of miR-199a-5p and VASP interaction.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Intervenção Coronária Percutânea , Humanos , Clopidogrel/farmacologia , Clopidogrel/uso terapêutico , Plaquetas/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/genética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2C19/metabolismo , Ticlopidina/farmacologia , Ticlopidina/uso terapêutico , MicroRNAs/genética , MicroRNAs/metabolismo
12.
Cell Biol Int ; 46(10): 1693-1703, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35904232

RESUMO

TSPAN8 mediates signal transduction from extracellular cues and regulates cell development, activation, growth, and motility. However, whether TSPAN8 is involved in the progression of diabetic nephropathy (DN) remains unclear. This study aimed to explore the potential functional roles of TSPAN8 in regulating autophagy and apoptosis of HK-2 cells induced by high glucose (HG). RT-PCR and western blot analysis (WB) were employed to detect TSPAN8 levels in the blood samples of DN patients as well as in HG-induced HK-2 cells. Cell proliferation of HK-2 cells was examined by CCK-8 assay, and apoptosis was analyzed by flow cytometry. The functional role of TSPAN8 was evaluated by the transfection of TSPAN8 expression plasmid. Results showed that TSPAN8 level was significantly reduced in the blood samples of DN patients and HG-induced HK-2 cell lines. TSPAN8 overexpression rescued HG-induced apoptosis in HK-2 cells. TSPAN8 could form a complex with Rictor and mTORC2. TSPAN8 overexpression suppressed HG-induced autophagy in HK-2 cells, which was dependent on mTOR activity. In conclusion, the present study showed that TSPAN8 mitigates HG-induced autophagy and apoptosis in HK-2 cells, which may serve as candidate target for DN treatment.


Assuntos
Nefropatias Diabéticas , Alvo Mecanístico do Complexo 2 de Rapamicina , MicroRNAs , Tetraspaninas , Apoptose , Autofagia , Nefropatias Diabéticas/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , MicroRNAs/metabolismo , Tetraspaninas/metabolismo
13.
Environ Sci Technol ; 56(10): 6631-6638, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35500091

RESUMO

Environmentally benign CeO2-WO3/TiO2 catalysts are promising alternatives to commercial toxic V2O5-WO3/TiO2 for controlling NOx emission via selective catalytic reduction (SCR), but the insufficient catalytic activity of CeO2-WO3/TiO2 catalysts is one of the obstacles in their applications because of a lack of an in-depth understanding of the CeO2-WO3 interactions. Herein, we design a Ce1-W1/TiO2 model catalyst by anchoring Ce1-W1 atom pairs on anatase TiO2(001) to investigate the synergy between Ce and W in SCR. A series of characterizations combined with density functional theory calculations and in situ diffuse-reflectance infrared Fourier-transform experiments reveal that there exists a strong electronic interaction within Ce1-W1 atom pairs, leading to a much better SCR performance of Ce1-W1/TiO2 compared with that of Ce1/TiO2 and W1/TiO2. The Ce1-W1 synergy not only shifts down the lowest unoccupied states of Ce1 near the Fermi level, thus enhancing the abilities in adsorbing and oxidizing NH3 but also makes the frontier orbital electrons of W1 delocalized, thus accelerating the activation of O2. The deep insight of the Ce-W synergy may assist in the design and development of efficient catalysts with an SCR activity as high as or even higher than V2O5-WO3/TiO2.


Assuntos
Amônia , Óxidos de Nitrogênio , Catálise , Óxidos , Titânio
14.
BMC Cardiovasc Disord ; 22(1): 575, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36581799

RESUMO

BACKGROUNDS: Remarkable interindividual variability in clopidogrel response is observed, genetic polymorphisms in P2RY12 and its signal pathway is supposed to affect clopidogrel response in CHD patients. METHODS: 539 CHD patients treated with clopidogrel were recruited. The platelet reaction index (PRI) indicated by VASP-P level were detected in 12-24 h after clopidogrel loading dose or within 5-7 days after initiation of maintain dose clopidogrel. A total of 13 SNPs in relevant genes were genotyped in sample A (239 CHD patients). The SNPs which have significant differences in PRI will be validated in another sample (sample B, 300 CHD patients). RESULTS: CYP2C19*2 increased the risk of clopidogrel resistance significantly. When CYP2C19*2 and CYP2C19*3 were considered, CYP2C19 loss of function (LOF) alleles were associated with more obviously increased the risk of clopidogrel resistance; P2RY12 rs6809699C > A polymorphism was also associated with increased risk of clopidogrel resistance (AA vs CC: P = 0.0398). This difference still existed after stratification by CYP2C19 genotypes. It was also validated in sample B. The association was also still significant even in the case of stratification by CYP2C19 genotypes in all patients (sample A + B). CONCLUSION: Our data suggest that P2RY12 rs6809699 is associated with clopidogrel resistance in CHD patients. Meanwhile, the rs6809699 AA genotype can increase on-treatment platelet activity independent of CYP2C19 LOF polymorphisms.


Assuntos
Clopidogrel , Doença das Coronárias , Inibidores da Agregação Plaquetária , Receptores Purinérgicos P2Y12 , Humanos , Clopidogrel/farmacologia , Doença das Coronárias/tratamento farmacológico , Doença das Coronárias/genética , Citocromo P-450 CYP2C19/genética , Genótipo , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo de Nucleotídeo Único , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y12/genética
15.
Biol Pharm Bull ; 45(4): 438-445, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35110426

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer related death with few therapeutic treatment options. Under adverse tumor microenvironment, autophagy is an important mechanism of metabolic adaptations to sustain the survival and proliferation of tumor cells. Therefore, targeting autophagic activity represents a promising opportunity for NSCLC treatment. Here, we found that amodiaquine (AQ) increased autophagosome numbers and LC3BII and p62 at protein levels in A549 lung cancer cells suggesting the blockade of autophagic flux by AQ. To identify the key metabolic vulnerability associated with autophagy inhibition by AQ treatment, we then performed transcriptomics analysis in the presence or absence of AQ in A549 lung cancer cells and found stearoyl-CoA desaturase 1 (SCD1) was one of the most highly upregulated with AQ exposure. The induction of SCD1 by AQ exposure at both protein and mRNA level suggests that SCD1 could represent a potential therapeutic target of AQ treatment. Treatment of AQ in combination with SCD1 inhibition by A939572 demonstrated robust synergistic anti-cancer efficacy in cell proliferation assay and a lung cancer mouse xenograft model. Taken together, our study identified SCD1 could be a new therapeutic target upon autophagy inhibition by AQ exposure. Combinational treatment of autophagy inhibition and SCD1 inhibition achieves synergistic anti-tumor effect both in vitro and in vivo. This combinational approach could be a promising strategy for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Amodiaquina/farmacologia , Amodiaquina/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Estearoil-CoA Dessaturase/metabolismo , Microambiente Tumoral
16.
Arch Phys Med Rehabil ; 103(9): 1874-1882, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35533736

RESUMO

Health care delivery shifted and adapted with the COVID-19 pandemic caused by the novel severe acute respiratory syndrome coronavirus 2. Stroke care was negatively affected across the care continuum and may lead to poor community living outcomes in those who survived a stroke during the ongoing pandemic. For instance, delays in seeking care, changes in length of stays, and shifts in discharge patterns were observed during the pandemic. Those seeking care were younger and had more severe neurologic effects from stroke. Increased strain was placed on caregivers and public health efforts, and community-wide lockdowns, albeit necessary to reduce the spread of COVID-19, had detrimental effects on treatment and recommendations to support community living outcomes. The American Congress of Rehabilitation Medicine Stroke Interdisciplinary Special Interest Group Health and Wellness Task Force convened to (1) discuss international experiences in stroke care and rehabilitation and (2) review recently published literature on stroke care and outcomes during the pandemic. Based on the findings in the literature, the task force proposes recommendations and interdisciplinary approaches at the (1) institutional and societal level; (2) health care delivery level; and (3) individual and interpersonal level spanning across the care continuum and into the community.


Assuntos
COVID-19 , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Humanos , Pandemias , Acidente Vascular Cerebral/epidemiologia
17.
BMC Nephrol ; 23(1): 89, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246069

RESUMO

BACKGROUND: Diabetic nephropathy (DN) is one of the most common and serious complications of diabetes, which can lead to renal failure and fatality. miRNAs are an important class of endogenous non-coding RNAs implicated in a wide range of biological processes and pathological conditions. This study aims to investigate the potential functional roles of miR-543 in DN and its underlying mechanisms. METHODS: qRT-PCR was performed to detect the expression levels of miR-543 and TSPAN8 in kidney tissues of mice with DN. Western blot (WB) was used to measure the protein levels. CCK8 assay was employed to evaluate the proliferation of HK2 cells. Dual luciferase reporter assay was conducted to verify the functional interaction between miR-543 and TSpan8. RESULTS: The downregulation of miR-543 and upregulation of TSPAN8 were observed in kidney tissues of mice with DN. miR-543 mimic significantly decreased cell proliferation and autophagy in high-glucose (HG)-induced HK2 cells, and promoted cell fibrosis. We further identified a putative binding site between miR-543 and TSPAN8, which was validated by Dual luciferase reporter assay. The treatment of miR-543 mimic and miR-543 inhibitor could reduce or increase TSPAN8 protein level respectively. We further showed that the overexpression of TSPAN8 could attenuate HG-induced cell injury by reducing fibrosis and increase autophagy. The effects of miR-543 mimic in proliferation, fibrosis, and autophagy were rescued by TSPAN8 overexpression. CONCLUSIONS: Our study indicate that miR-543 mediates high-glucose induced DN via targeting TSPAN8. Interfering miR-543/TSPAN8 axis could serve as potential approach to ameliorate DN.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Animais , Autofagia/genética , Nefropatias Diabéticas/patologia , Feminino , Fibrose , Glucose/toxicidade , Humanos , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Tetraspaninas/genética
18.
J Enzyme Inhib Med Chem ; 37(1): 728-742, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35176963

RESUMO

The linking of ethacrynic acid with ethylenediamine and 1,4-butanediamine gave EDEA and BDEA, respectively, as membrane-permeable divalent pro-inhibitors of glutathione S-transferase (GST). Their divalent glutathione conjugates showed subnanomolar inhibition and divalence-binding to GSTmu (GSTM) (PDB: 5HWL) at ∼0.35 min-1. In cisplatin-resistant SK-OV-3, COC1, SGC7901 and A549 cells, GSTM activities probed by 15 nM BDEA or EDEA revealed 5-fold and 1.0-fold increases in cisplatin-resistant SK-OV-3 and COC1 cells, respectively, in comparison with the susceptible parental cells. Being tolerable by HEK293 and LO2 cells, BDEA at 0.2 µM sensitised resistant SK-OV-3 and COC1 cells by ∼3- and ∼5-folds, respectively, released cytochrome c and increased apoptosis; EDEA at 1.0 µM sensitised resistant SK-OV-3 and A549 cells by ∼5- and ∼7-fold, respectively. EDEA at 1.7 µg/g sensitised resistant SK-OV-3 cells to cisplatin at 3.3 µg/g in nude mouse xenograft model. BDEA and EDEA are promising leads for probing cellular GSTM and sensitising cisplatin-resistant ovarian cancers.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Ácido Etacrínico/farmacologia , Etilenodiaminas/farmacologia , Glutationa Transferase/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Putrescina/farmacologia , Animais , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cisplatino/química , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Etacrínico/química , Etilenodiaminas/química , Feminino , Glutationa Transferase/metabolismo , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Putrescina/química , Relação Estrutura-Atividade
19.
Brain Inj ; 36(7): 829-840, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35708261

RESUMO

BACKGROUND: There is a need for an overview of systematic reviews (SRs) examining randomized clinical trials (RCTs) of pharmacological interventions in the treatment of intracranial pressure (ICP) post-TBI. OBJECTIVES: To summarize pharmacological effectiveness in decreasing ICP in SRs with RCTs and evaluate study quality. METHODS: Comprehensive literature searches were conducted in MEDLINE, PubMed, EMBASE, PsycINFO, and Cochrane Library databases for English SRs through October 2020. Inclusion criteria were SRs with RCTs that examined pharmacological interventions to treat ICP in patients post-TBI. Data extracted were participant characteristics, pharmacological interventions, and ICP outcomes. Study quality was assessed with AMSTAR-2. RESULTS: Eleven SRs between 2003 and 2020 were included. AMSTAR-2 ratings revealed 3/11 SRs of high quality. Pharmacological interventions included hyperosmolars, neuroprotectives, anesthetics, sedatives, and analgesics. Study samples ranged from 7 to 1282 patients. Hyperosmolar agents and sedatives were beneficial in lowering elevated ICP. High bolus dose opioids had a more deleterious effect on ICP. Neuroprotective agents did not show any effects in ICP management. CONCLUSIONS: RCT sample sizes and findings in the SRs varied. A lack of detailed data syntheses was noted. AMSTAR-2 analysis revealed moderate to high quality in most SRs. Future SRs may focus on streamlined reporting of dosing and clearer clinical recommendations. PROSPERO-Registration: CRD42015017355.


Assuntos
Lesões Encefálicas Traumáticas , Pressão Intracraniana , Lesões Encefálicas Traumáticas/tratamento farmacológico , Humanos , Hipnóticos e Sedativos , Ensaios Clínicos Controlados Aleatórios como Assunto , Revisões Sistemáticas como Assunto
20.
Pharmacol Res ; 174: 105829, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34411731

RESUMO

BACKGROUND: Lenvatinib, a tyrosine kinase inhibitor, has been approved for the treatment of several cancers. However, its regulatory activity and related mechanisms on T cell antitumour immunity need to be further investigated. METHODS: The antitumour activity of lenvatinib in immunocompetent and immunodeficient mice was compared to determine the role of T cell immunity. The antitumour activity of T cells was analysed by cytokine production and adoptive T cell therapy. The immunosuppressive effects of MDSCs on T cells were determined by detecting cytokine production in T cells after being cocultured with MDSCs. The adjuvant immunotherapy effect of lenvatinib was determined by combination therapy with CAR-T cells targeted carbonic anhydrase IX (CAIX) in a murine renal cancer model. RESULTS: The antitumour activity of lenvatinib was greater in immunocompetent mice than in immunodeficient mice and was attenuated by CD8+T cell depletion. Lenvatinib increased proliferation, tumour infiltration and antitumour activity of T cells. Importantly, adoptive transfer of lenvatinib-treated T cells showed a long-term antitumour response in vivo. Mechanistically, lenvatinib upregulated T cell-related chemokines (CXCL10 and CCL8) in tumours and decreased the frequency and immunosuppressive activity of MDSCs. Furthermore, lenvatinib enhanced the efficacy of CAR-T cells in a murine renal cancer model. CONCLUSION: Our study revealed novel antitumour mechanisms of lenvatinib by enhancing T cell-mediated antitumour immunity. These findings are of great significance for guiding the clinical use of lenvatinib and provide a good candidate for future combination therapy with T-cell therapies or other immunotherapies.


Assuntos
Imunossupressores/farmacologia , Neoplasias Renais/tratamento farmacológico , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Receptores de Antígenos Quiméricos/imunologia , Animais , Linfócitos T CD8-Positivos , Anidrase Carbônica IX/metabolismo , Quimiocinas/metabolismo , Feminino , Humanos , Imunidade Celular , Imunoterapia , Neoplasias Renais/imunologia , Camundongos Nus , Células Supressoras Mieloides , Neoplasias Experimentais , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA