Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO Rep ; 23(10): e54371, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36062942

RESUMO

Light and ambient high temperature (HT) have opposite effects on seed germination. Light induces seed germination through activating the photoreceptor phytochrome B (phyB), resulting in the stabilization of the transcription factor HFR1, which in turn sequesters the suppressor PIF1. HT suppresses seed germination and triggers protein S-nitrosylation. Here, we find that HT suppresses seed germination by inducing the S-nitrosylation of HFR1 at C164, resulting in its degradation, the release of PIF1, and the activation of PIF1-targeted SOMNUS (SOM) expression to alter gibberellin (GA) and abscisic acid (ABA) metabolism. Active phyB (phyBY276H ) antagonizes HFR1 S-nitrosylation and degradation by increasing S-nitrosoglutathione reductase (GSNOR) activity. In line with this, substituting cysteine-164 of HFR1 with serine (HFR1C164S ) abolishes the S-nitrosylation of HFR1 and decreases the HT-induced degradation of HFR1. Taken together, our study suggests that HT and phyB antagonistically modulate the S-nitrosylation level of HFR1 to coordinate seed germination, and provides the possibility to enhance seed thermotolerance through gene-editing of HFR1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Germinação/genética , Giberelinas/metabolismo , Giberelinas/farmacologia , Luz , Fitocromo/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo , Proteína S/metabolismo , Proteína S/farmacologia , Sementes/genética , Serina/metabolismo , Temperatura , Fatores de Transcrição/metabolismo
2.
Med Sci Monit ; 30: e942509, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38561932

RESUMO

BACKGROUND Diabetic peripheral neuropathy (DPN) is a prevalent complication affecting over 60% of type 2 diabetes patients. Early diagnosis is challenging, leading to irreversible impacts on quality of life. This study explores the predictive value of combining HbA1c and Neutrophil-to-Lymphocyte Ratio (NLR) for early DPN detection. MATERIAL AND METHODS An observational study was conducted at the First People's Hospital of Linping District, Hangzhou spanning from May 2019 to July 2020. Data on sex, age, biochemical measurements were collected from electronic medical records and analyzed. Employing multivariate logistic regression analysis, we sought to comprehend the factors influencing the development of DPN. To assess the predictive value of individual and combined testing for DPN, a receiver operating characteristic (ROC) curve was plotted. The data analysis was executed using R software (Version: 4.1.0). RESULTS The univariate and multivariate logistic regression analysis identified the level of glycated hemoglobin (HbA1C) (OR=1.94, 95% CI: 1.27-3.14) and neutrophil-to-lymphocyte ratio (NLR) (OR=4.60, 95% CI: 1.15-22.62, P=0.04) as significant risk factors for the development of DPN. Receiver operating characteristic (ROC) curve analysis demonstrated that HbA1c, NLR, and their combined detection exhibited high sensitivity in predicting the development of DPN (71.60%, 90.00%, and 97.2%, respectively), with moderate specificity (63.8%, 45.00%, and 50.00%, respectively). The area under the curve (AUC) for these predictors was 0.703, 0.661, and 0.733, respectively. CONCLUSIONS HbA1c and NLR emerge as noteworthy risk indicators associated with the manifestation of DPN in patients with type 2 diabetes. The combined detection of HbA1c and NLR exhibits a heightened predictive value for the development of DPN.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Neuropatias Diabéticas/diagnóstico , Neuropatias Diabéticas/etiologia , Hemoglobinas Glicadas , Linfócitos , Neutrófilos , Qualidade de Vida , Curva ROC , Masculino , Feminino
3.
BMC Genomics ; 24(1): 659, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919641

RESUMO

BACKGROUND: As an important vegetable crop, cultivated lettuce is grown worldwide and a great variety of agronomic traits have been preserved within germplasm collections. The mechanisms underlying these phenotypic variations remain to be elucidated in association with sequence variations. Compared with single nucleotide polymorphisms, structural variations (SVs) that have more impacts on gene functions remain largely uncharacterized in the lettuce genome. RESULTS: Here, we produced a comprehensive SV set for 333 wild and cultivated lettuce accessions. Comparison of SV frequencies showed that the SVs prevalent in L. sativa affected the genes enriched in carbohydrate derivative catabolic and secondary metabolic processes. Genome-wide association analysis of seven agronomic traits uncovered potentially causal SVs associated with seed coat color and leaf anthocyanin content. CONCLUSION: Our work characterized a great abundance of SVs in the lettuce genome, and provides a valuable genomic resource for future lettuce breeding.


Assuntos
Estudo de Associação Genômica Ampla , Lactuca , Lactuca/genética , Genoma de Planta , Melhoramento Vegetal , Fenótipo
4.
New Phytol ; 238(2): 688-704, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653950

RESUMO

The phytohormones abscisic acid (ABA) and gibberellic acid (GA) antagonistically control the shift between seed dormancy and its alleviation. DELAY OF GERMINATION1 (DOG1) is a critical regulator that determines the intensity of primary seed dormancy, but its underlying regulatory mechanism is unclear. In this study, we combined physiological, biochemical, and genetic approaches to reveal that a bHLH transcriptional factor WRKY36 progressively silenced DOG1 expression to break seed dormancy through ABI5-BINDING PROTEIN 2 (AFP2) as the negative regulator of ABA signal. AFP2 interacted with WRKY36, which recognizes the W-BOX in the DOG1 promoter to suppress its expression; Overexpressing WRKY36 broke primary seed dormancy, whereas wrky36 mutants showed strong primary seed dormancy. In addition, AFP2 recruited the transcriptional corepressor TOPLESS-RELATED PROTEIN2 (TPR2) to reduce histone acetylation at the DOG1 locus, ultimately mediating WRKY36-dependent inhibition of DOG1 expression to break primary seed dormancy. Our result proposes that the WRKY36-AFP2-TPR2 module progressively silences DOG1 expression epigenetically, thereby fine-tuning primary seed dormancy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Dormência de Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Abscísico/metabolismo , Sementes/fisiologia , Germinação/genética
5.
Microb Ecol ; 86(3): 2109-2119, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37099155

RESUMO

Archaeological wood, also known as wooden cultural relics, refers to ancient wood that has been worked by humans. Further insights into the decomposition mechanism of archaeological wood are needed for its preventive conservation. In this study, we assessed the microbiome diversity and cellulose decomposition processes on a 200-year-old ancient wooden seawall - the Qiantang River of Hangzhou, China. We used high-throughput sequencing (HTS) to deduce the metagenomic functions, particularly the cellulose-decomposing pathway of the microbial communities, through bioinformatical approaches. The predominant cellulose-decomposing microorganisms were then verified with traditional isolation, culture, and identification method. The results showed that the excavation of archaeological wood significantly altered the environment, accelerating the deterioration process of the archaeological wood through the carbohydrate metabolism and the xenobiotic biodegradation and metabolism pathways, under the comprehensive metabolism of complex ecosystem formed by bacteria, archaea, fungi, microfauna, plants, and algae. Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria were found to be the predominant source of bacterial cellulose-decomposing enzymes. Accordingly, we suggest relocating the wooden seawall to an indoor environment with controllable conditions to better preserve it. In addition, these results provide further evidence for our viewpoints that HTS techniques, combined with rational bioinformatical data interpretation approaches, can serve as powerful tools for the preventive protection of cultural heritage.


Assuntos
Celulose , Microbiota , Humanos , Celulose/metabolismo , Rios , Microbiota/genética , Fungos/genética , Bactérias/genética , Madeira/microbiologia
6.
Tohoku J Exp Med ; 260(3): 263-271, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37081619

RESUMO

Tumor necrosis factor-α (TNF-α) blocking therapy is recommended to treat ankylosing spondylitis for patients who fail to respond to nonsteroidal anti-inflammatory drugs (NSAIDs). Herein, we attempt to dissect whether blood type I and II interferon (IFN) production can be predictive of ankylosing spondylitis progression and treatment response to the tumor necrosis factor inhibitor (TNFi). A total of 50 ankylosing spondylitis patients receiving originator TNFi with a 6-month period were retrospectively analyzed. The patients who reached the Assessment of SpondyloArthritis international Society 40 (ASAS40) response at the 6-month interval were classified as responders (n = 29) to TNFi treatment, otherwise as non-responders (n = 21). The serum type I IFN activity, and the serum levels of IFN-α and IFN-γ in the patients at baseline were notably greater than the healthy controls. Pearson correlation analysis showed positive correlations in the patients between the serum type I IFN activity or the serum levels of IFN-α and IFN-γ, and BASDAI scores, ASDASCRP or pro-inflammatory factor production. The responders were demonstrated with reduced serum type I IFN activity concomitant with lower serum levels of IFN-α and IFN-γ compared to the non-responders after anti-TNF treatment. The serum type I IFN activity, and the serum levels of IFN-α and IFN-γ used as a test to predict responders and non-responders to anti-TNF treatment produced an area under the curve (AUC) of 0.837, 0.814, and 0.787, respectively. In conclusion, the study demonstrates that blood type I and II IFN production may be correlated with disease activity, inflammatory cytokine production, and indicative of unsatisfying response to TNFi treatment in ankylosing spondylitis patients.


Assuntos
Antirreumáticos , Espondilite Anquilosante , Humanos , Espondilite Anquilosante/tratamento farmacológico , Fator de Necrose Tumoral alfa , Interferon gama , Estudos Retrospectivos , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Antirreumáticos/uso terapêutico , Resultado do Tratamento
7.
Cell Physiol Biochem ; 50(4): 1255-1269, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30355922

RESUMO

BACKGROUND/AIMS: Genetic modification of mesenchymal stem cells (MSCs) is an essential requirement for their use as a delivery vehicle. To achieve higher transfection efficiency and better reproducibility than previously synthesized chitosan (100 kDa)-polyethylenimine (PEI; 1200 Da), we synthesized a low molecular weight PEI (1200 Da)-grafted chitosan (50 kDa) (CP). METHODS: Safety of CP/DNA or PEI (25 kDa)/DNA was evaluated by an MTT assay using A549 cells or MSCs and a zebrafish embryo model. Effects of CP/DNA on the characteristics of MSCs were evaluated using flow cytometry. Additionally, a pGL3 plasmid was used to investigate the transfection efficiency of PEI (25 kDa), chitosan (100 kDa)-PEI (1200 Da), and CP with different N/P mass ratios on A549 cells and MSCs. Furthermore, CP/pGL3 was used to investigate the effect of serum on transfection, and intracellular transport was assessed by observing the intracellular location of DNA using laser scanning confocal microscopy. In addition, the effect of endocytosis on transfection efficiency was evaluated using A549 cells pre-treated with different inhibitors. Investigations related to analysis of transfection efficiency were all performed using the BCA protein assay to standardize the data. Furthermore, TGF-ß1-and CXCR4-expressing plasmids were applied to evaluate the gene transfer efficiency of CP, including its effects on the osteogenic differentiation and migratory ability of MSCs. RESULTS: The safety evaluation demonstrated that CP/DNA had significantly lower toxicity than PEI (25 kDa)/DNA. Additionally, DNA entered MSCs transfected by CP without changing their properties, while the examination of intracellular transport demonstrated that CP/pGL3 was internalized rapidly into MSCs. Furthermore, studies of the internalization mechanism showed that CP/pGL3 complexes entered the cells through caveolae-mediated endocytosis, thereby suggesting that the CP coating helped DNA enter A549 cells without the requirement for receptors. Compared to PEI (25 kDa), the interference of serum on transfection was reduced significantly with the use of CP in both A549 cells and MSCs. To evaluate the effects of gene delivery using the constructed CP complex and the possibility of obtaining gene-engineered MSCs, TGF-ß1- and CXCR4-expressing plasmids were successfully delivered into MSCs, confirming their ability to induce osteogenesis and change the migratory ability of MSCs, respectively. CONCLUSION: These results demonstrated that CP could be used to deliver genes into MSCs and could potentially be used in gene therapy based on MSCs.


Assuntos
Quitosana/química , Polietilenoimina/química , Transfecção/métodos , Células A549 , Animais , Cavéolas/metabolismo , Portadores de Fármacos/química , Embrião não Mamífero/metabolismo , Endocitose , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Peso Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/genética , Antígenos Thy-1/metabolismo , Fator de Crescimento Transformador beta1/genética , Peixe-Zebra
8.
Microb Ecol ; 76(2): 352-361, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29307025

RESUMO

Feilaifeng is a cultural heritage site that contains unique Buddhist statues which date back to the Five Dynasties period (907 AD-960 AD). The site was inscribed on world heritage list by UNESCO in 2011. Various patinas, which may be caused by fungi, have covered the surface of the limestone and have severely diminished the esthetic value of the statues and altered the limestone structure. Culture-dependent method was used to isolate and identify the fungi. After incubation on modified B4 medium, the calcifying fungi were identified by optical microscopy and scanning electron microscopy combined with X-ray energy-dispersive analysis. Aspergillus, Penicillium, and Colletotrichum were observed as the biomineralizing fungi. X-ray diffraction showed that the patina consisted of calcite (CaCO3), but the crystals synthesized by the identified fungi were whewellite (CaC2O4·H2O) for Aspergillus and Penicillium, and vaterite (CaCO3) for Colletotrichum. In addition, the metabolites of Colletotrichum suppressed the transformation of vaterite to calcite, but Mg2+ could inhibit the function of the metabolites. The different crystal form between the patina and the products of fungi may suggest two different pathways of patina formation and provide important reference data for studies of the mechanisms of biomineralization, cleaning of the patina, and protection of the Feilaifeng statues.


Assuntos
Carbonato de Cálcio/metabolismo , Fungos/metabolismo , Microbiologia do Solo , Animais , Carbonato de Cálcio/química , Oxalato de Cálcio , China , Materiais de Construção , Cristalização , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Microscopia Eletrônica de Varredura , Difração de Raios X
9.
Nanomedicine ; 10(1): 257-67, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23770065

RESUMO

One of the main limitations of anti-tumor gene therapy is the lack of an effective way to deliver therapeutic genes to tumor sites. Bone marrow mesenchymal stem cells (BMSCs) have been proposed as cellular delivery vehicles to tumor sites in tumor-targeted cancer gene therapy. Here, we investigated the therapeutic effects of cytomegalovirus-thymidine kinase expressing BMSCs (TK-BMSCs) on pulmonary melanoma metastasis combined with prodrug ganciclovir. BMSCs were successfully engineered through a non-viral gene vector. The gene recombinant BMSCs migrated to the pulmonary area and were found to have the tendency to target tumor nodules after systemic delivery. In vitro results demonstrate that the engineered BMSCs have significant suicide effects in the presence of ganciclovir in a dose-dependent manner and can exert a sufficient bystander effect on B16F10 tumor cells in co-culture experiments. In vivo studies confirmed the therapeutic effects of TK-BMSCs/ganciclovir on the metastasis tumor model. FROM THE CLINICAL EDITOR: This study investigates the possibility of gene transfer via bone marrow mesenchymal stem cells in anti-cancer gene therapy using a metastatic melanoma model and cytomegalovirus-thymidine kinase expressing stem cells, demonstrating clear therapeutic effects.


Assuntos
Células da Medula Óssea , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Células-Tronco Mesenquimais , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Citomegalovirus/genética , Técnicas de Transferência de Genes , Genes Transgênicos Suicidas/genética , Vetores Genéticos , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Timidina Quinase/biossíntese , Timidina Quinase/genética , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Curr Pharm Biotechnol ; 25(3): 340-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37309773

RESUMO

OBJECTIVES: In order to assess the biosafety of HAuNS using zebrafish models and the cancer cell lines HepG2, HEK293, and A549, this study prepared HAuNS in a variety of sizes and alterations. METHODS: By oxidizing cobalt nanoparticles encased in gold shells, HAuNS were created. In the meantime, PEG- and PEI-coated HAuNS were created. The diameters of the HAuNS that were produced were 30~40 nm, 50~60 nm, and 70~80 nm. MTT assay was used to assess the toxicity of HAuNS on HepG2, HEK293, and A549 cells. For the investigation of their toxicities, HAuNS (50~60 nm) of various concentrations were incubated with zebrafish embryos. Then, cell death was determined using acridine orange staining. RESULTS: In a cell line model, it was demonstrated that purified HAuNS exhibit lower toxicity than unpurified HAuNS. Meanwhile, it was discovered that surface-modified HAuNS was less hazardous than unmodified HAuNS. Unpurified HAuNS (50.60 nm) exposure to embryos caused deformity and increased mortality. Moreover, embryos exposed to HAuNS displayed an increase in cell death, showing that HAuNS can put zebrafish under physiological stress. CONCLUSION: The possible toxicity of HAuNS is now more understood thanks to this investigation. The details could improve our comprehension of the nanotoxicity of medication delivery systems. Comparing HAuNS (50~60 nm) to the other two particle sizes, its toxicity was quite low. Compared to unpurified HAuNS, purified HAuNS displayed less toxicity. Comparing PEI-HAuNS and HAuNS to PEG-HAuNS, cytotoxicity was found to be lower. Our data support the use of pure HAuNS, HAuNS-PEG, and HAuNS (50~60 nm) as possible photothermal conductors when seen as a whole.


Assuntos
Nanosferas , Peixe-Zebra , Animais , Humanos , Ouro/toxicidade , Nanosferas/toxicidade , Contenção de Riscos Biológicos , Células HEK293
11.
Int J Food Microbiol ; 417: 110685, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579546

RESUMO

Cinnamaldehyde displays strong antifungal activity against fungi such as Aspergillus niger, but its precise molecular mechanisms of antifungal action remain inadequately understood. In this investigation, we applied chemoproteomics and bioinformatic analysis to unveil the target proteins of cinnamaldehyde in Aspergillus niger cells. Additionally, our study encompassed the examination of cinnamaldehyde's effects on cell membranes, mitochondrial malate dehydrogenase activity, and intracellular ATP levels in Aspergillus niger cells. Our findings suggest that malate dehydrogenase could potentially serve as an inhibitory target of cinnamaldehyde in Aspergillus niger cells. By disrupting the activity of malate dehydrogenase, cinnamaldehyde interferes with the mitochondrial tricarboxylic acid (TCA) cycle, leading to a significant decrease in intracellular ATP levels. Following treatment with cinnamaldehyde at a concentration of 1 MIC, the inhibition rate of MDH activity was 74.90 %, accompanied by an 84.5 % decrease in intracellular ATP content. Furthermore, cinnamaldehyde disrupts cell membrane integrity, resulting in the release of cellular contents and subsequent cell demise. This study endeavors to unveil the molecular-level antifungal mechanism of cinnamaldehyde via a chemoproteomics approach, thereby offering valuable insights for further development and utilization of cinnamaldehyde in preventing and mitigating food spoilage.


Assuntos
Acroleína , Acroleína/análogos & derivados , Antifúngicos , Aspergillus niger , Proteínas Fúngicas , Malato Desidrogenase , Acroleína/farmacologia , Aspergillus niger/efeitos dos fármacos , Malato Desidrogenase/metabolismo , Proteínas Fúngicas/metabolismo , Antifúngicos/farmacologia , Trifosfato de Adenosina/metabolismo , Proteômica , Testes de Sensibilidade Microbiana , Ciclo do Ácido Cítrico/efeitos dos fármacos
12.
Artigo em Inglês | MEDLINE | ID: mdl-38650680

RESUMO

Introduction: The Lifei Decoction (LD) is a commonly utilized Chinese medicine for the treatment of sepsis and bronchial inflammation. However, its therapeutic potential in chronic obstructive pulmonary disease (COPD) remains unknown. Therefore, the objective of this study was to investigate the therapeutic efficacy and underlying mechanism of LD in a mouse model of COPD induced by cigarette smoke (CS) combined with lipopolysaccharide (LPS). Methods: Hematoxylin-eosin (H&E) staining was employed to observe the pathological alterations in lung tissue, while ELISA was utilized for the detection of levels of inflammatory factors in both lung tissue and bronchoalveolar lavage fluid (BALF). Additionally, Western blot analysis was conducted to assess the expression of p-NF-κB, GDF11, ZO-1, and Occludin-1 proteins. The changes in intestinal flora were evaluated using the viable bacteria count method. Results: The administration of LD demonstrates significant efficacy in mitigating pulmonary tissue damage in a murine model, while concurrently inhibiting the activation of the inflammatory pathway NF-κB to attenuate the levels of pro-inflammatory factors. Moreover, LD exhibits the capacity to enhance the expression of intestinal functional proteins ZO-1 and Occludin-1, thereby rectifying dysbiosis within the gut microbiota. Conclusion: The LD shows great promise as a potential treatment for COPD.


Assuntos
Anti-Inflamatórios , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Mediadores da Inflamação , Lipopolissacarídeos , Pulmão , NF-kappa B , Ocludina , Doença Pulmonar Obstrutiva Crônica , Transdução de Sinais , Proteína da Zônula de Oclusão-1 , Animais , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/microbiologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/microbiologia , Medicamentos de Ervas Chinesas/farmacologia , Proteína da Zônula de Oclusão-1/metabolismo , NF-kappa B/metabolismo , Ocludina/metabolismo , Mediadores da Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Masculino , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fumaça/efeitos adversos , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Camundongos
13.
Sci Rep ; 14(1): 9205, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649738

RESUMO

Quinoa (Chenopodium quinoa Willd.), an Andean crop, is a facultative halophyte food crop recognized globally for its high nutritional value and plasticity to adapt to harsh conditions. We conducted a genome-wide association study on a diverse set of quinoa germplasm accessions. These accessions were evaluated for the following agronomic and biochemical traits: days to 50% flowering (DTF), plant height (PH), panicle length (PL), stem diameter (SD), seed yield (SY), grain diameter (GD), and thousand-grain weight (TGW). These accessions underwent genotyping-by-sequencing using the DNBSeq-G400R platform. Among all evaluated traits, TGW represented maximum broad-sense heritability. Our study revealed average SNP density of ≈ 3.11 SNPs/10 kb for the whole genome, with the lowest and highest on chromosomes Cq1B and Cq9A, respectively. Principal component analysis clustered the quinoa population in three main clusters, one clearly representing lowland Chilean accessions, whereas the other two groups corresponded to germplasm from the highlands of Peru and Bolivia. In our germplasm set, we estimated linkage disequilibrium decay to be ≈ 118.5 kb. Marker-trait analyses revealed major and consistent effect associations for DTF on chromosomes 3A, 4B, 5B, 6A, 7A, 7B and 8B, with phenotypic variance explained (PVE) as high as 19.15%. Nine associations across eight chromosomes were also found for saponin content with 20% PVE by qSPN5A.1. More QTLs were identified for PL and TGW on multiple chromosomal locations. We identified putative candidate genes in the genomic regions associated with DTF and saponin content. The consistent and major-effect genomic associations can be used in fast-tracking quinoa breeding for wider adaptation across marginal environments.


Assuntos
Chenopodium quinoa , Genoma de Planta , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Fenótipo , Peru , Genótipo , Bolívia , Cromossomos de Plantas/genética , Característica Quantitativa Herdável
14.
Yao Xue Xue Bao ; 48(8): 1209-20, 2013 Aug.
Artigo em Zh | MEDLINE | ID: mdl-24187826

RESUMO

The applications of targeting gene delivery systems in tumor therapy have attracted extensive attention of researchers in recent years, as they can selectively deliver the therapeutic gene to tumor sites, improve the success rate of gene therapy and reduce the side effects. Therefore, design and development of novel gene delivery vehicles have been a hot area of current research. Recent studies have shown that mesenchymal stem cells (MSCs) have the ability to migrate towards and engraft into the tumor sites. Therefore, these properties make them a great hope for efficient targeted-delivery vehicles in cancer gene therapy. In this review, we examine the promising of utilization of MSCs as a targeted-delivery vehicle for cancer gene therapy, and summarize various challenges and concerns regarding this therapy.


Assuntos
Terapia Genética/métodos , Células-Tronco Mesenquimais/citologia , Neoplasias/terapia , Animais , Movimento Celular/genética , Portadores de Fármacos , Marcação de Genes/métodos , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Neoplasias/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfecção
15.
Sci Total Environ ; 883: 163694, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37100151

RESUMO

The silk residues in the soil formed the unique niche, termed "silksphere." Here, we proposed a hypothesis that silksphere microbiota have great potential as a biomarker for unraveling the degradation of the ancient silk textiles with great archaeological and conservation values. To test our hypothesis, in this study, we monitored the dynamics of microbial community composition during silk degradation via both indoor soil microcosmos model and outdoor environment with amplicon sequencing against 16S and ITS gene. Microbial community divergence was evaluated with Welch two sample t-test, PCoA, negative binomial generalized log-linear model and clustering, etc. Community assembly mechanisms differences between silksphere and bulk soil microbiota were compared with dissimilarity-overlap curve (DOC) model, Neutral model and Null model. A well-established machine learning algorithm, random forest, was also applied to the screening of potential biomarkers of silk degradation. The results illustrated the ecological and microbial variability during the microbial degradation of silk. Vast majority of microbes populating the silksphere microbiota strongly diverged from those in bulk soil. Certain microbial flora can serve as an indicator of silk degradation, which would lead to a novel perspective to perform identification of archaeological silk residues in the field. To sum up, this study provides a new perspective to perform the identification of archaeological silk residue through the dynamics of microbial communities.


Assuntos
Microbiota , Microbiologia do Solo , Bactérias/metabolismo , Seda , Microbiota/genética , Solo/química , Sepultamento
16.
Cureus ; 15(9): e45793, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37872914

RESUMO

Hypokalemia may be present in some patients with Sjogren's syndrome. When a patient with Sjogren's syndrome presents with hypokalemia, we would first consider it to be a result of the renal involvement of Sjogren's syndrome. However, in this case report, we present a young woman with Sjogren's syndrome who presented with hypokalemia that was not caused by renal tubular acidosis but by the presence of a coexisting aldosterone-producing adenoma. Cases of Sjogren's syndrome coexisting with aldosterone-producing adenoma are extremely rare. This finding underscores the need for more careful differential diagnosis in patients with Sjogren's syndrome who also have hypokalemia.

17.
Mol Pharm ; 9(9): 2698-709, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22862421

RESUMO

The success of gene therapy relies largely on an effective targeted gene delivery system. Till recently, more and more targeted delivery carriers, such as liposome, nanoparticles, microbubbles, etc., have been developed. However, the clinical applications of these systems were limited for their several disadvantages. Therefore, design and development of novel drug/gene delivery vehicles became a hot topic. Cell-based delivery systems are emerging as an alternative for the targeted delivery system as we described previously. Mesenchymal stem cells (MSCs) are an attractive cell therapy carrier for the delivery of therapeutic agents into tumor sites mainly for their tumor-targeting capacities. In the present study, a nonviral vector, PEI(600)-Cyd, prepared by linking low molecular weight polyethylenimine (PEI) and ß-cyclodextrin (ß-CD), was used to introduce the therapeutical gene, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), to MSCs. Meanwhile, the characterization, transfection efficiency, cytotoxicity, cellular internalization, and its mechanism of this nonviral vector were evaluated. The in vitro expression of TRAIL from MSCs-TRAIL was demonstrated by both enzyme-linked immunosorbent assay and Western blot analysis. The lung tumor homing ability of MSCs was further confirmed by the in vitro and in vivo model. Moreover, the therapeutic effects as well as the safety of MSCs-TRAIL on lung metastases bearing C57BL/6 mice and normal C57BL/6 mice were also demonstrated. Our results supported both the effectiveness of nonviral vectors in transferring the therapeutic gene to MSCs and the feasibility of using MSCs as a targeted gene delivery carrier, indicating that MSCs could be a promising tumor target delivery vehicle in cancer gene therapy based on nonviral gene recombination.


Assuntos
Terapia Genética/métodos , Células-Tronco Mesenquimais/fisiologia , Animais , Movimento Celular/genética , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoimina/química , Polietilenoimina/metabolismo , Ratos , Ratos Sprague-Dawley , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transfecção/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , beta-Ciclodextrinas/química , beta-Ciclodextrinas/metabolismo
18.
Biotechnol Appl Biochem ; 59(3): 163-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23586825

RESUMO

This study evaluated the potential of utilizing transfected pTGFß-1 gene-engineered rat mesenchymal stem cells (MSCs) using nonviral vector to promote cartilage regeneration. Pullulan-spermine was used as the nonviral gene vector and gelatin sponge was used as the scaffold. MSCs were engineered with TGF-ß1 gene with either the three-dimensional (3D) reverse transfection system or the two-dimensional (2D) conventional transfection system. For the 3D reverse transfection system, pullulan-spermine/pTGF-ß1 gene complexes were immobilized to the gelatin sponge, followed by the seeding of MSCs. Pullulan-spermine/pTGF-ß1 gene complexes were delivered to MSCs cultured in the plate to perform the 2D conventional transfection system, and then MSCs were seeded to the gelatin sponge. Then, TGF-ß1 gene-transfected MSC seeded gelatin sponge was implanted to the full-thickness cartilage defect. Compared with the control group, both groups of TGF-ß1 gene-engineered MSCs improved cartilage regeneration through optical observation and histology staining. So, with pullulan-spermine as the nonviral vector, TGF-ß1-gene engineered MSCs can induce cartilage regeneration in vivo.


Assuntos
Cartilagem/citologia , Vetores Genéticos/genética , Transplante de Células-Tronco Mesenquimais , Regeneração/genética , Fator de Crescimento Transformador beta1/genética , Animais , Cartilagem/metabolismo , Técnicas de Transferência de Genes , Glucanos/genética , Glucanos/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Sprague-Dawley , Espermina/metabolismo
19.
Pharmazie ; 67(3): 229-32, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22530304

RESUMO

Current efforts had been made to undertake a three-dimensional (3-D) reverse transfection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in PLGA scaffolds. As a kind of multipotent stem cells, BM-MSCs show great potential and tremendous capacity in the gene transfection field and PLGA 3-D scaffold has been shown to be a biomaterial that provides structural support to cells proliferation and tissue engineering. The objective of this study was to assess the transfection efficiency of BM-MSCs with a 3-D reverse transfection method by using PLGA scaffold and observe the SEM photographs of BM-MSCs cultured on PLGA scaffold. BM-MSCs were cultured in 3-D PLGA scaffold which was incorporated with pullulan-spermine/pGL3. It was shown that the gene expression duration of BM-MSCs transfected using 3D reverse method with pullulan-spermine/DNA in the presence of serum maintained 12 days at high levels as compared with the plasmid DNA in medium, and scanning electronic microscopy (SEM) photographs of BM-MSCs cultured on PLGA scaffold exhibited robust cell attachment and viability when cultured in PLGA scaffold in vitro. This study demonstrates that the 3-D reverse transfection method of BM-MSCs using PLGA scaffold could achieve long gene expression in a relatively high level, therefore this transfection system is promising in gene transfection and tissue engineering.


Assuntos
DNA/biossíntese , DNA/química , Ácido Láctico/química , Células-Tronco Mesenquimais/metabolismo , Plasmídeos/química , Ácido Poliglicólico/química , Animais , Adesão Celular , Células Cultivadas , Excipientes , Glucanos/química , Masculino , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos , Ratos Sprague-Dawley , Espermina/química , Transfecção/métodos
20.
RSC Adv ; 12(4): 1922-1931, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35425254

RESUMO

With a view to preventing fungal deterioration of historical stone artworks, we report the use of phosphonium-based ionic liquids (ILs) as potent antifungal agents against dematiaceous fungi commonly found on heritage stones. Three ILs: tributyldodecylphosphonium polyoxometalate [P44412][POM], tributyltetradecylphosphonium polyoxometalate [P44414][POM], and trihexyltetradecylphosphonium polyoxometalate [P66614][POM] were prepared and their thermal stabilities and in vitro antifungal activities were evaluated. From the ramped temperature thermogravimetric analysis and antifungal experiments it can be clearly observed that the alkyl chain length of the tetraalkylphosponium cation has a significant influence on the thermal and antifungal properties. The thermal stability and antifungal activity decreased as the number of carbon atoms of the alkyl substituents increased and, thus, followed the order [P44412][POM] > [P44414][POM] > [P66614][POM]. In addition, inoculation of four fungal species on IL-coated sandstone surfaces showed significant inhibition of fungal growth, endowing the materials with potential applications in heritage sandstone conservation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA