Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 3406-3418, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412313

RESUMO

RNA helicases function as versatile enzymes primarily responsible for remodeling RNA secondary structures and organizing ribonucleoprotein complexes. In our study, we conducted a systematic analysis of the helicase-related activities of Escherichia coli HrpA and presented the structures of both its apo form and its complex bound with both conventional and non-canonical DNAs. Our findings reveal that HrpA exhibits NTP hydrolysis activity and binds to ssDNA and ssRNA in distinct sequence-dependent manners. While the helicase core plays an essential role in unwinding RNA/RNA and RNA/DNA duplexes, the N-terminal extension in HrpA, consisting of three helices referred to as the APHB domain, is crucial for ssDNA binding and RNA/DNA duplex unwinding. Importantly, the APHB domain is implicated in binding to non-canonical DNA structures such as G-quadruplex and i-motif, and this report presents the first solved i-motif-helicase complex. This research not only provides comprehensive insights into the multifaceted roles of HrpA as an RNA helicase but also establishes a foundation for further investigations into the recognition and functional implications of i-motif DNA structures in various biological processes.


Assuntos
DNA Helicases , Proteínas de Escherichia coli , Sequência de Aminoácidos , DNA/química , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética , Escherichia coli/metabolismo , RNA/química , RNA Helicases/genética , Proteínas de Escherichia coli/metabolismo
2.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361041

RESUMO

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Glicocálix/metabolismo , Mucinas/metabolismo , Antineoplásicos/metabolismo , Neoplasias/terapia
3.
Genomics ; 116(2): 110821, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38447684

RESUMO

Prefoldin Subunit 5 (PFDN5) plays a critical role as a member of the prefoldins (PFDNs) in maintaining a finely tuned equilibrium between protein production and degradation. However, there has been no comprehensive analysis specifically focused on PFDN5 thus far. Here, a comprehensive multi-omics (transcriptomics, genomics, and proteomics) analysis, systematic molecular biology experiments (in vitro and in vivo), transcriptome sequencing and PCR Array were performed for identifying the value of PFDN5 in pan-cancer, especially in Gastric Cancer (GC). We found PFDN5 had the potential to serve as a prognostic and therapeutic biomarker in GC. And PFDN5 could promote the proliferation of GC cells, primarily by affecting the cell cycle, cell death and immune process etc. These findings provide novel insights into the molecular mechanisms and precise treatments of in GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Prognóstico , Multiômica , Genômica , Biomarcadores
4.
Nano Lett ; 24(28): 8770-8777, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968171

RESUMO

Oxygen-mediated triplet-triplet annihilation upconversion (TTA-UC) quenching limits the application of such organic upconversion materials. Here, we report that the photooxidation of organic amines is an effective and versatile strategy to suppress oxygen-mediated upconversion quenching in both organic solvents and aqueous solutions. The strategy is based on the dual role of organic amines in photooxidation, i.e., as singlet oxygen scavengers and electron donors. Under photoexcitation, the photosensitizer sensitizes oxygen to produce singlet oxygen for the oxidation of alkylamine, reducing the oxygen concentration. However, photoinduced electron transfer among photosensitizers, organic amines, and oxygen leads to the production of superoxide anions that suppress TTA-UC. To observe oxygen-tolerating TTA-UC, we find that alkyl secondary amines can balance the production of singlet oxygen and superoxide anions. We then utilize polyethyleneimine (PEI) to synthesize amphiphilic polymers to encapsulate TTA-UC pairs for the formation of water-dispersible, ultrasmall, and multicolor-emitting TTA-UC nanoparticles.

5.
Nano Lett ; 24(7): 2408-2414, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38329291

RESUMO

Two-dimensional (2D) heterostructures with ferromagnetism and ferroelectricity provide a promising avenue to miniaturize the device size, increase computational power, and reduce energy consumption. However, the direct synthesis of such eye-catching heterostructures has yet to be realized up to now. Here, we design a two-step chemical vapor deposition strategy to growth of Cr2S3/WS2 vertical heterostructures with atomically sharp and clean interfaces on sapphire. The interlayer charge transfer and periodic moiré superlattice result in the emergence of room-temperature ferroelectricity in atomically thin Cr2S3/WS2 vertical heterostructures. In parallel, long-range ferromagnetic order is discovered in 2D Cr2S3 via the magneto-optical Kerr effect technique with the Curie temperature approaching 170 K. The charge distribution variation induced by the moiré superlattice changes the ferromagnetic coupling strength and enhances the Curie temperature. The coexistence of ferroelectricity and ferromagnetism in 2D Cr2S3/WS2 vertical heterostructures provides a cornerstone for the further design of logic-in-memory devices to build new computing architectures.

6.
J Am Chem Soc ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607259

RESUMO

Chemical pressure generated through ion doping into crystal lattices has been proven to be conducive to exploration of new matter, development of novel functionalities, and realization of unprecedented performances. However, studies are focusing on one-time doping, and there is a lack of both advanced investigations for multiple doping and sophisticated strategies to precisely and quantitatively track the gradual functionality evolution along with progressive chemical pressure implementation. Herein, high-valent Y3+ and equal-valent Mg2+ is successively doped to replace multiple Ca sites in Ca10.5(PO4)7:Eu2+. The luminescence evolution of Eu2+ serves as an optical probe, allowing step-by-step and atomic-level tracking of the site occupation of Y3+ and Mg2+, interassociation of Ca sites, and ultimately functionality improvement. The resulting Ca8MgY(PO4)7:Eu2+ displays a record-high relative sensitivity for optical thermometry. Utilization of the environment-sensitive emission of Eu2+ as a luminescent probe has offered a unique approach to monitoring structure-functionality evolution in vivo with atomic precision, which shall also be extended to optimization of other functionalities such as ferroelectricity, conductivity, thermoelectricity, and catalytic activity through precise control over atomic diffusion in other types of substances.

7.
J Am Chem Soc ; 146(15): 10785-10797, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38573588

RESUMO

The anti-Stokes shift represents the capacity of photon upconversion to convert low-energy photons to high-energy photons. Although triplet exciton-mediated photon upconversion presents outstanding performance in solar energy harvesting, photoredox catalysis, stereoscopic 3D printing, and disease therapeutics, the interfacial multistep triplet exciton transfer leads to exciton energy loss to suppress the anti-Stokes shift. Here, we report near infrared-II (NIR-II) excitable triplet exciton-mediated photon upconversion using a hybrid photosensitizer consisting of lead sulfide quantum dots (PbS QDs) and new surface ligands of thiophene-substituted diketopyrrolopyrrole (Th-DPP). Under 1064 nm excitation, this photon upconversion revealed a record-corrected upconversion efficiency of 0.37% (normalized to 100%), with the anti-Stokes shift (1.07 eV) approaching the theoretical limit (1.17 eV). The observation of this unexpected result is due to our discovery of the presence of a weak interaction between the sulfur atom on Th-DPP and Pb2+ on the PbS QDs surface, facilitating electronic coupling between PbS QDs and Th-DPP, such that the realization of triplet exciton transfer efficiency is close to 100% even when the energy gap is as small as 0.04 eV. With this premise, this photon upconversion as a photocatalyst enables the production of standing organic gel via photopolymerization under 1064 nm illumination, displaying NIR-II photon-driven photoredox catalysis. This research not only establishes the foundation for enhancing the performance of NIR-II excitable photonic upconversion but also promotes its development in photonics and photoredox catalysis.

8.
J Am Chem Soc ; 146(10): 6530-6535, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38410847

RESUMO

Thermal quenching (TQ) has been naturally entangling with luminescence since its discovery, and lattice vibration, which is characterized as multiphonon relaxation (MPR), plays a critical role. Considering that MPR may be suppressed under exterior pressure, we have designed a core/shell upconversion luminescence (UCL) system of α-NaYF4:Yb/Ln@ScF3 (Ln = Ho, Er, and Tm) with positive/negative thermal expansion behavior so that positive thermal expansion of the core will be restrained by negative thermal expansion of the shell when heated. This imposed pressure on the crystal lattice of the core suppresses MPR, reduces the amount of energy depleted by TQ, and eventually saves more energy for luminescing, so that anti-TQ or even thermally enhanced UCL is obtained.

9.
J Am Chem Soc ; 146(31): 21791-21805, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39069661

RESUMO

The diagnosis of disease biomarkers is crucial for the identification, monitoring, and prognostic assessment of malignant disease. However, biological samples with autofluorescence, complex components, and heterogeneity pose major challenges to reliable biosensing. Here, we report the self-assembly of natural proteins and the triplet-triplet annihilation upconversion (TTA-UC) pair to form upconverted protein clusters (∼8.2 ± 1.1 nm), which were further assembled into photon upconversion supramolecular assemblies (PUSA). This PUSA exhibited unique features, including a small size (∼44.1 ± 4.1 nm), oxygen tolerance, superior biocompatibility, and easy storage via lyophilization, all of which are long sought after for photon upconversion materials. Further, we have revealed that the steric hindrance of the annihilator suppresses the stacking of the annihilator in PUSA, which is vital for maintaining the water dispersibility and enhancing the upconversion performance of PUSA. In conjunction with sarcosine oxidase, this near infrared (NIR)-excitable PUSA nanoprobe could perform background-free biosensing of urinary sarcosine, which is a common biomarker for prostatic carcinoma (PCa). More importantly, this nanoprobe not only allows for qualitative identification of urinary samples from PCa patients by the unaided eye under NIR-light-emitting diode (LED) illumination but also quantifies the concentration of urinary sarcosine. These remarkable findings have propelled photon upconversion materials to a new evolutionary stage and expedited the progress of upconversion biosensing in clinical diagnostics.


Assuntos
Técnicas Biossensoriais , Fótons , Humanos , Sarcosina/urina , Sarcosina/química , Sarcosina Oxidase/química , Proteínas/análise , Proteínas/química
10.
Apoptosis ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635022

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pathophysiological syndrome in which pulmonary vascular pressure increases under hypoxic stimulation and there is an urgent need to develop emerging therapies for the treatment of HPH. LncRNA MIR210HG is a long non-coding RNA closely related to hypoxia and has been widely reported in a variety of tumor diseases. But its mechanism in hypoxic pulmonary hypertension is not clear. In this study, we identified for the first time the potential effect of MIR210HG on disease progression in HPH. Furthermore, we investigated the underlying mechanism through which elevated levels of MIR210HG promotes the transition from a contractile phenotype to a synthetic phenotype in PASMCs under hypoxia via activation of autophagy-dependent ferroptosis pathway. While overexpression of HIF-2α in PASMCs under hypoxia significantly reversed the phenotypic changes induced by MIR210HG knockdown. We further investigated the potential positive regulatory relationship between STAT3 and the transcription of MIR210HG in PASMCs under hypoxic conditions. In addition, we established both in vivo and in vitro models of HPH to validate the differential expression of specific markers associated with hypoxia. Our findings suggest a potential mechanism of LncRNA MIR210HG in the progression of HPH and offer potential targets for disease intervention and treatment.

11.
Anal Chem ; 96(31): 12908-12915, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39066699

RESUMO

To coordinate cellular physiology, cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites. Lipid droplets (LDs) and nuclear membrane (NM) contact sites are particularly vital communication hubs, playing key roles in the exchange of signaling molecules, lipids, and metabolites. However, there is still a lack of understanding of the specific morphology of the contact sites. Here, we combine advanced three-dimensional (3D) imaging with a high-brightness fluorescent probe specifically targeting LDs to map the structural landscape of LD-NM contact sites. The probe exhibits exceptional photophysical properties, making it highly suitable for visualizing the changes occurring in LDs during the apoptosis process. In addition, we utilize the advantages of the probe to accurately monitor the overexpression of abnormal LDs in cirrhosis by 3D imaging for the first time. The outcomes of this investigation highlight that the probe has potential as a robust imaging tool to investigate intricate biological functions of LDs and their implications in related diseases.


Assuntos
Corantes Fluorescentes , Imageamento Tridimensional , Gotículas Lipídicas , Membrana Nuclear , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Humanos , Corantes Fluorescentes/química , Membrana Nuclear/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Animais , Células Hep G2
12.
Anal Chem ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172597

RESUMO

The mitochondria, as one of the essential organelles in cells, are closely associated with numerous biological processes. Therefore, the realization of clear and real-time imaging for tracking mitochondria is of profound significance. Here, we present a mitochondria-targeting fluorescent probe, N(CH2)3-PD-NEt, for the real-time fluorescence imaging of mitochondria in living cells. Using the probe, the fluorescence changes of mitochondria stimulated by different drugs were successfully observed by fluorescence imaging. In addition, the dynamic processes of mitochondria and lysosomes during apoptosis were also explored. Importantly, we observed several novel dynamic interaction patterns between mitochondria and lysosomes. Among them, the most prominent pattern involved the noncontact movements of two lysosomes, that is, one lysosome gradually approached the other lysosome over time, eventually coming into contact and merging with it while gradually combining with mitochondria to form new mitochondria. Notably, the protrusions of the mitochondria became increasingly evident during this process. Meanwhile, we successfully observed the dynamic changes of mitochondria with SIM super-resolution imaging. The study provides promising help for the in-depth study of the dynamic processes of mitochondrial physiology and pathology and the study of the interactions between organelles.

13.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629424

RESUMO

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Assuntos
Tumores do Estroma Gastrointestinal , Proteínas com Homeodomínio LIM , Proteínas Musculares , Proteínas Proto-Oncogênicas c-kit , Transdução de Sinais , Fatores de Transcrição , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Tumores do Estroma Gastrointestinal/metabolismo , Animais , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mutação , Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Mesilato de Imatinib/farmacologia , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Linhagem Celular Tumoral , Ubiquitinação
14.
Toxicol Appl Pharmacol ; 484: 116884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442791

RESUMO

BACKGROUND: The global increase in the aging population has led to a higher incidence of osteoporosis among the elderly. OBJECTIVE: This study aimed to evaluate the protective properties of pinoresinol diglucoside (PDG), an active constituent of Eucommia ulmoides, against dexamethasone-induced osteoporosis and chondrodysplasia. METHODS: A zebrafish model of osteoporosis was established by exposing larval zebrafish to dexamethasone. The impact of PDG on bone mineralization was assessed through alizarin red and calcein staining. Alkaline phosphatase activity was quantified to evaluate osteoblast function. The influence of PDG on chondrogenesis was estimated using alcian blue staining. Fluorescence imaging and motor behavior analysis were employed to assess the protective effect of PDG on the structure and function of dexamethasone-induced skeletal teratogenesis. qPCR determined the expression of osteogenesis and Wnt signaling-related genes. Molecular docking was used to assess the potential interactions between PDG and Wnt receptors. RESULTS: PDG significantly increased bone mineralization and corrected spinal curvature and cartilage malformations in the zebrafish model. Furthermore, PDG enhanced swimming abilities compared to the model group. PDG mitigated dexamethasone-induced skeletal abnormalities in zebrafish by upregulating Wnt signaling, showing potential interaction with Wnt receptors FZD2 and FZD5. CONCLUSION: PDG mitigates dexamethasone-induced osteoporosis and chondrodysplasia by promoting bone formation and activating Wnt signaling.


Assuntos
Lignanas , Osteoporose , Peixe-Zebra , Humanos , Animais , Idoso , Simulação de Acoplamento Molecular , Osteogênese , Dexametasona/farmacologia , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Receptores Wnt , Diferenciação Celular
15.
BMC Cancer ; 24(1): 434, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589832

RESUMO

BACKGROUND: Lung adenocarcinoma, a leading cause of cancer-related mortality, demands precise prognostic indicators for effective management. The presence of spread through air space (STAS) indicates adverse tumor behavior. However, comparative differences between 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography(PET)/computed tomography(CT) and CT in predicting STAS in lung adenocarcinoma remain inadequately explored. This retrospective study analyzes preoperative CT and 18F-FDG PET/CT features to predict STAS, aiming to identify key predictive factors and enhance clinical decision-making. METHODS: Between February 2022 and April 2023, 100 patients (108 lesions) who underwent surgery for clinical lung adenocarcinoma were enrolled. All these patients underwent 18F-FDG PET/CT, thin-section chest CT scan, and pathological biopsy. Univariate and multivariate logistic regression was used to analyze CT and 18F-FDG PET/CT image characteristics. Receiver operating characteristic curve analysis was performed to identify a cut-off value. RESULTS: Sixty lesions were positive for STAS, and 48 lesions were negative for STAS. The STAS-positive was frequently observed in acinar predominant. However, STAS-negative was frequently observed in minimally invasive adenocarcinoma. Univariable analysis results revealed that CT features (including nodule type, maximum tumor diameter, maximum solid component diameter, consolidation tumor ratio, pleural indentation, lobulation, spiculation) and all 18F-FDG PET/CT characteristics were statistically significant difference in STAS-positive and STAS-negative lesions. And multivariate logistic regression results showed that the maximum tumor diameter and SUVmax were the independent influencing factors of CT and 18F-FDG PET/CT in STAS, respectively. The area under the curve of maximum tumor diameter and SUVmax was 0.68 vs. 0.82. The cut-off value for maximum tumor diameter and SUVmax was 2.35 vs. 5.05 with a sensitivity of 50.0% vs. 68.3% and specificity of 81.2% vs. 87.5%, which showed that SUVmax was superior to the maximum tumor diameter. CONCLUSION: The radiological features of SUVmax is the best model for predicting STAS in lung adenocarcinoma. These radiological features could predict STAS with excellent specificity but inferior sensitivity.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Estudos Retrospectivos , Compostos Radiofarmacêuticos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/cirurgia , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X
16.
Chem Res Toxicol ; 37(6): 1044-1052, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38833663

RESUMO

The aim of the present study was to evaluate the cardiotoxic effects of alcohol and its potential toxic mechanism on ferroptosis in mice and H9c2 cells. Mice were intragastrically treated with three different concentrations of alcohol, 7, 14, and 28%, each day for 14 days. Body weight and electrocardiography (ECG) were recorded over the 14 day period. Serum creatine kinase (CK), lactic dehydrogenase (LDH), MDA, tissue iron, and GSH levels were measured. Cardiac tissues were examined histologically, and ferroptosis was assessed. In H9c2 cardiomyocytes, cell viability, reactive oxygen species (ROS), labile iron pool (LIP), and mitochondrial membrane potential (MMP) were measured. The proteins of ferroptosis were evaluated by the western blot technique in vivo and in vitro. The results showed that serum CK, LDH, MDA, and tissue iron levels significantly increased in the alcohol treatment group in a dose-dependent manner. The content of GSH decreased after alcohol treatment. ECG and histological examinations showed that alcohol impaired cardiac function and structure. In addition, the levels of ROS and LIP increased, and MMP levels decreased after alcohol treatment. Ferrostatin-1 (Fer-1) protected cells from lipid peroxidation. Western blotting analysis showed that alcohol downregulated the expression of Nrf2, NQO1, HO-1, and GPX4. The expressions of P53 and TfR were upregulated in vivo and in vitro. Fer-1 significantly alleviated alcohol-induced ferroptosis. In conclusion, the study showed that Nrf2/NQO1-dependent ferroptosis played a vital role in the cardiotoxicity induced by alcohol.


Assuntos
Cardiotoxicidade , Etanol , Ferroptose , NAD(P)H Desidrogenase (Quinona) , Fator 2 Relacionado a NF-E2 , Animais , Ferroptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Camundongos , Cardiotoxicidade/metabolismo , Cardiotoxicidade/etiologia , Masculino , Espécies Reativas de Oxigênio/metabolismo , Ratos , Camundongos Endogâmicos C57BL , Sobrevivência Celular/efeitos dos fármacos
17.
Pharmacol Res ; 206: 107294, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38992851

RESUMO

Liver fibrosis is a determinant-stage process of many chronic liver diseases and affected over 7.9 billion populations worldwide with increasing demands of ideal therapeutic agents. Discovery of active molecules with anti-hepatic fibrosis efficacies presents the most attacking filed. Here, we revealed that hepatic L-aspartate levels were decreased in CCl4-induced fibrotic mice. Instead, supplementation of L-aspartate orally alleviated typical manifestations of liver injury and fibrosis. These therapeutic efficacies were alongside improvements of mitochondrial adaptive oxidation. Notably, treatment with L-aspartate rebalanced hepatic cholesterol-steroid metabolism and reduced the levels of liver-impairing metabolites, including corticosterone (CORT). Mechanistically, L-aspartate treatment efficiently reversed CORT-mediated glucocorticoid receptor ß (GRß) signaling activation and subsequent transcriptional suppression of the mitochondrial genome by directly binding to the mitochondrial genome. Knockout of GRß ameliorated corticosterone-mediated mitochondrial dysfunction and hepatocyte damage which also weakened the improvements of L-aspartate in suppressing GRß signaling. These data suggest that L-aspartate ameliorates hepatic fibrosis by suppressing GRß signaling via rebalancing cholesterol-steroid metabolism, would be an ideal candidate for clinical liver fibrosis treatment.


Assuntos
Ácido Aspártico , Tetracloreto de Carbono , Cirrose Hepática , Fígado , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides , Animais , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Masculino , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Ácido Aspártico/metabolismo , Camundongos , Corticosterona , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Colesterol/metabolismo , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/patologia , Camundongos Knockout
18.
J Sleep Res ; : e14159, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318885

RESUMO

This study investigated the abnormal dynamic functional connectivity (dFC) variability of the thalamo-cortical circuit in patients with obstructive sleep apnea (OSA) and explored the relationship between these changes and the clinical characteristics of patients with OSA. A total of 91 newly diagnosed patients with moderate-to-severe OSA and 84 education-matched healthy controls (HCs) were included. All participants underwent neuropsychological testing and a functional magnetic resonance imaging scan. We explored the thalamo-cortical dFC changes by dividing the thalamus into 16 subregions and combining them using a sliding-window approach. Correlation analysis assessed the relationship between dFC variability and clinical features, and the support vector machine method was used for classification. The OSA group exhibited increased dFC variability between the thalamic subregions and extensive cortical areas, compared with the HCs group. Decreased dFC variability was observed in some frontal-occipital-temporal cortical regions. These dFC changes positively correlated with daytime sleepiness, disease severity, and cognitive scores. Altered dFC variability contributed to the discrimination between patients with OSA and HCs, with a classification accuracy of 77.8%. Our findings show thalamo-cortical overactivation and disconnection in patients with OSA, disrupting information flow within the brain networks. These results enhance understanding of the temporal variability of thalamo-cortical circuits in patients with OSA.

19.
J Org Chem ; 89(16): 11747-11752, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39083827

RESUMO

The radical 1,3-hydro-di/monofluoromethylation of N,N'-cyclic azomethine imines with HCF2SO2Na/H2CFSO2Na via photoredox catalysis is described. This reaction exhibits broad functional group compatibility, providing the desired products in good yields. However, CF3SO2Na failed to produce the trifluoromethyl product. DFT calculations revealed that the transition state activation energy for radical trifluoromethylation was significantly higher and the isotropic charge repulsion makes it difficult for the CF3 radical to transfer electrons.

20.
Inorg Chem ; 63(24): 11470-11477, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38833633

RESUMO

Two antimony selenites, Sb2O2SeO3 and Sb2O(SeO3)2, were synthesized by simultaneously incorporating stereochemically active lone pair electrons containing SeO32- and Sb3+. These compounds are structured with [SbOx] polyhedra and [SeO3] units within a two-dimensional framework. Both of them exhibit cutoffs at 300 and 330 nm within the ultraviolet (UV) range and demonstrate significant birefringence, with indices of 0.069 and 0.126 at 546 nm, respectively. These properties highlight their potential as UV birefringent materials. Structural analyses and theoretical calculations reveal that their exceptional birefringence results from the synergistic interactions between SeO32- anions and Sb3+ cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA