Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 132(4): 465-480, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36722348

RESUMO

BACKGROUND: Pathological cardiac hypertrophy can lead to heart failure and is one of the leading causes of death globally. Understanding the molecular mechanism of pathological cardiac hypertrophy will contribute to the treatment of heart failure. DUBs (deubiquitinating enzymes) are essential to cardiac pathophysiology by precisely controlling protein function, localization, and degradation. This study set out to investigate the role and molecular mechanism of a DUB, USP25 (ubiquitin-specific peptidase 25), in pathological cardiac hypertrophy. METHODS: The role of USP25 in myocardial hypertrophy was evaluated in murine cardiomyocytes in response to Ang II (angiotensin II) and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of heart failure patients. Liquid chromotography with mass spectrometry/mass spectrometry analysis combined with Co-IP was used to identify SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2A), an antihypertrophy protein, as an interacting protein of USP25. To clarify the molecular mechanism of USP25 in the regulation of SERCA2a, we constructed a series of mutant plasmids of USP25. In addition, we overexpressed USP25 and SERCA2a in the heart with adenoassociated virus serotype 9 vectors to validate the biological function of USP25 and SERCA2a interaction. RESULTS: We revealed increased protein level of USP25 in murine cardiomyocytes subject to Ang II and transverse aortic constriction stimulation and in hypertrophic myocardium tissues of patients with heart failure. USP25 deficiency aggravated cardiac hypertrophy and cardiac dysfunction under Ang II and transverse aortic constriction treatment. Mechanistically, USP25 bound to SERCA2a directly via its USP (ubiquitin-specific protease) domain and cysteine at position 178 of USP25 exerts deubiquitination to maintain the stability of the SERCA2a protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby maintaining calcium handling in cardiomyocytes. Moreover, restoration of USP25 expression via adenoassociated virus serotype 9 vectors in USP25-/- mice attenuated Ang II-induced cardiac hypertrophy and cardiac dysfunction, whereas myocardial overexpression of SERCA2a could mimic the effect of USP25. CONCLUSIONS: We confirmed that USP25 inhibited cardiac hypertrophy by deubiquitinating and stabilizing SERCA2a.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Animais , Camundongos , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Ubiquitina Tiolesterase/genética
2.
Circ Res ; 132(6): 707-722, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36786193

RESUMO

BACKGROUND: Cardiac remodeling in heart failure involves macrophage-mediated immune responses. Recent studies have shown that a PRR (pattern recognition receptor) called dectin-1, expressed on macrophages, mediates proinflammatory responses. Whether dectin-1 plays a role in pathological cardiac remodeling is unknown. Here, we identified a potential role of dectin-1 in this disease. METHODS: To model aberrant cardiac remodeling, we utilized mouse models of chronic Ang II (angiotensin II) infusion. In this model, we assessed the potential role of dectin-1 through using D1KO (dectin-1 knockout) mice and bone marrow transplantation chimeric mice. We then used cellular and molecular assays to discover the underlying mechanisms of dectin-1 function. RESULTS: We found that macrophage dectin-1 is elevated in mouse heart tissues following chronic Ang II administration. D1KO mice were significantly protected against Ang II-induced cardiac dysfunction, hypertrophy, fibrosis, inflammatory responses, and macrophage infiltration. Further bone marrow transplantation studies showed that dectin-1 deficiency in bone marrow-derived cells prevented Ang II-induced cardiac inflammation and dysfunction. Through detailed molecular studies, we show that Ang II binds directly to dectin-1, causing dectin-1 homodimerization and activating the downstream Syk (spleen tyrosine kinase)/NF-κB (nuclear factor kappa B) signaling pathway to induce expression of inflammatory and chemoattractant factors. Mutagenesis studies identified R184 in the C-type lectin domain to interact with Ang II. Blocking dectin-1 in macrophages suppresses Ang II-induced inflammatory mediators and subsequent intercellular cross talk with cardiomyocytes and fibroblasts. CONCLUSIONS: Our study has discovered dectin-1 as a new nonclassical receptor of Ang II and a key player in cardiac remolding and dysfunction. These studies suggest that dectin-1 may be a new target for treating hypertension-related heart failure.


Assuntos
Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Remodelação Ventricular/fisiologia , Lectinas Tipo C/genética , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , NF-kappa B/metabolismo , Angiotensina II/toxicidade , Camundongos Knockout , Fibrose , Camundongos Endogâmicos C57BL
3.
EMBO Rep ; 24(3): e56135, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36579465

RESUMO

Understanding the molecular mechanisms of pathological vascular remodeling is important for treating cardiovascular diseases and complications. Recent studies have highlighted a role of deubiquitinases in vascular pathophysiology. Here, we investigate the role of a deubiquitinase, OTUD1, in angiotensin II (Ang II)-induced vascular remodeling. We detect upregulated OTUD1 in the vascular endothelium of Ang II-challenged mice and show that OTUD1 deletion attenuates vascular remodeling, collagen deposition, and EndMT. Conversely, OTUD1 overexpression aggravates these pathological changes both in vivo and in vitro. Mechanistically, SMAD3 is identified as a substrate of OTUD1 using co-immunoprecipitation followed by LC-MS/MS. We find that OTUD1 stabilizes SMAD3 and facilitates SMAD3/SMAD4 complex formation and subsequent nuclear translocation through both K48- and K63-linked deubiquitination. OTUD1-mediated SMAD3 activation regulates transcription of genes involved in vascular EndMT and remodeling in HUVECs. Finally, SMAD3 inhibition reverses OTUD1-promoted vascular remodeling. Our findings demonstrate that endothelial OTUD1 promotes Ang II-induced vascular remodeling by deubiquitinating SMAD3. We identify SMAD3 as a target of OTUD1 and propose OTUD1 as a potential therapeutic target for diseases related to vascular remodeling.


Assuntos
Angiotensina II , Doenças Cardiovasculares , Camundongos , Animais , Angiotensina II/farmacologia , Remodelação Vascular/genética , Cromatografia Líquida , Espectrometria de Massas em Tandem
4.
Arterioscler Thromb Vasc Biol ; 44(6): 1365-1378, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38695170

RESUMO

BACKGROUND: Macrophages play a crucial role in atherosclerotic plaque formation, and the death of macrophages is a vital factor in determining the fate of atherosclerosis. GSDMD (gasdermin D)-mediated pyroptosis is a programmed cell death, characterized by membrane pore formation and inflammatory factor release. METHODS: ApoE-/- and Gsdmd-/- ApoE-/- mice, bone marrow transplantation, and AAV (adeno-associated virus serotype 9)-F4/80-shGSDMD (shRNA-GSDMD) were used to examine the effect of macrophage-derived GSDMD on atherosclerosis. Single-cell RNA sequencing was used to investigate the changing profile of different cellular components and the cellular localization of GSDMD during atherosclerosis. RESULTS: First, we found that GSDMD is activated in human and mouse atherosclerotic plaques and Gsdmd-/- attenuates the atherosclerotic lesion area in high-fat diet-fed ApoE-/- mice. We performed single-cell RNA sequencing of ApoE-/- and Gsdmd-/- ApoE-/- mouse aortas and showed that GSDMD is principally expressed in atherosclerotic macrophages. Using bone marrow transplantation and AAV-F4/80-shGSDMD, we identified the potential role of macrophage-derived GSDMD in aortic pyroptosis and atherosclerotic injuries in vivo. Mechanistically, GSDMD contributes to mitochondrial perforation and mitochondrial DNA leakage and subsequently activates the STING (stimulator of interferon gene)-IRF3 (interferon regulatory factor 3)/NF-κB (nuclear factor kappa B) axis. Meanwhile, GSDMD regulates the STING pathway activation and macrophage migration via cytokine secretion. Inhibition of GSDMD with GSDMD-specific inhibitor GI-Y1 (GSDMD inhibitor Y1) can effectively alleviate the progression of atherosclerosis. CONCLUSIONS: Our study has provided a novel macrophage-derived GSDMD mechanism in the promotion of atherosclerosis and demonstrated that GSDMD can be a potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose , Modelos Animais de Doenças , Fator Regulador 3 de Interferon , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Mitocôndrias , NF-kappa B , Proteínas de Ligação a Fosfato , Piroptose , Transdução de Sinais , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Ligação a Fosfato/metabolismo , Proteínas de Ligação a Fosfato/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Regulador 3 de Interferon/genética , Camundongos , NF-kappa B/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos Knockout para ApoE , Placa Aterosclerótica , Doenças da Aorta/patologia , Doenças da Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/prevenção & controle , Gasderminas
5.
Microb Pathog ; 194: 106829, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084310

RESUMO

Goose astroviruses (GAstVs) are important pathogens which can cause gout in goslings leading to huge economic losses for the goose farming industry in China. In 2023, an infectious disease characterized by visceral gout broke out in commercial goose farms in Guangxi and Guangdong provinces of China. In this study, two GAstV strains of GXNN and GDCS were successfully isolated from these two disease-ridden goose farms. The complete genomic lengths of these two strains were 7166 bp, and phylogenetic analysis showed that they were both GAstV-2 subtypes. The 3-dimensional structures of the capsid protein were predicted and six characteristic mutation sites at amino acid positions 60, 61, 228, 229, 456 and 523 were found within the strong antigenic regions. A recombination event occurred at 6833-7070 nt between the GAstV TZ03 and Turkey astrovirus CA/00 and this was detected in both the GXNN and GDCS strains. Another recombinant event occurred at 63-2747 nt between the GAstV XT1 and GAstV SDPY and this was detected in the GDCS strain. When 1-day-old goslings were infected with the novel GXNN and GDCS strains, they showed severe visceral gout. This was accompanied by enlarged spleens, liver hemorrhages and urate deposits in the kidneys and ureters and their blood urea nitrogen levels were significantly elevated. The mortality rates of the GXNN- and GDCS-infected groups were pathogenically high at 80 % and 60 %, respectively. These results will promote our understanding of the evolution and epidemic potential of GAstVs in China.


Assuntos
Infecções por Astroviridae , Proteínas do Capsídeo , Gansos , Genoma Viral , Gota , Filogenia , Doenças das Aves Domésticas , Animais , Gansos/virologia , China , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/patologia , Gota/virologia , Gota/veterinária , Gota/patologia , Proteínas do Capsídeo/genética , Avastrovirus/genética , Avastrovirus/patogenicidade , Avastrovirus/isolamento & purificação , Avastrovirus/classificação , Virulência , Astroviridae/genética , Astroviridae/isolamento & purificação , Astroviridae/patogenicidade
6.
FASEB J ; 37(2): e22740, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583707

RESUMO

Heart failure (HF) is the leading cause of morbidity and mortality worldwide. Activation of the innate immune system initiates an inflammatory response during cardiac remodeling induced by isoproterenol (ISO). Here, we investigated whether Toll-like receptor-2 (TLR2) mediates ISO-induced inflammation, hypertrophy, and fibrosis. TLR2 was found to be increased in the heart tissues of mouse with HF under ISO challenge. Further, cardiomyocytes and macrophages were identified as the main cellular sources of the increased TLR2 levels in the model under ISO stimulation. The effect of TLR2 deficiency on ISO-induced cardiac remodeling was determined using TLR2 knockout mice and bone marrow transplantation models. In vitro studies involving ISO-treated cultured cardiomyocytes and macrophages showed that TLR2 knockdown significantly decreased ISO-induced cell inflammation and remodeling via MAPKs/NF-κB signaling. Mechanistically, ISO significantly increased the TLR2-MyD88 interaction in the above cells in a TLR1-dependent manner. Finally, DAMPs, such as HSP70 and fibronectin 1 (FN1), were found to be released from the cells under ISO stimulation, which further activated TLR1/2-Myd88 signaling and subsequently activated pro-inflammatory cytokine expression and cardiac remodeling. In summary, our findings suggest that TLR2 may be a target for the alleviation of chronic adrenergic stimulation-associated HF. In addition, this paper points out the possibility of TLR2 as a new target for heart failure under ISO stimulation.


Assuntos
Insuficiência Cardíaca , Receptor 2 Toll-Like , Camundongos , Animais , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Miócitos Cardíacos/metabolismo , Isoproterenol/toxicidade , Receptor 1 Toll-Like/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Remodelação Ventricular , Macrófagos/metabolismo , Arritmias Cardíacas/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos Knockout , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-38841867

RESUMO

OBJECTIVES: The clinical efficacy and safety of a novel left atrial appendage (LAA) occluder of the SeaLA closure system in patients with nonvalvular atrial fibrillation (NVAF) were reported. BACKGROUND: Patients with NVAF are at a higher risk of stroke compared to healthy individuals. Left atrial appendage closure (LAAC) has emerged as a prominent strategy for reducing the risk of thrombosis in individuals with NVAF. METHODS: A prospective, multicenter study was conducted in NVAF patients with a high risk of stroke. RESULTS: The LAAC was successfully performed in 163 patients. The mean age was 66.93 ± 7.92 years, with a mean preoperative CHA2DS2-VASc score of 4.17 ± 1.48. One patient with residual flow >3 mm was observed at the 6-month follow-up, confirmed by TEE. During the follow-up, 2 severe pericardiac effusions were noted, and 2 ischemic strokes were observed. Four device-related thromboses were resolved after anticoagulation treatment. There was no device embolism. CONCLUSIONS: The LAAC with the SeaLA device demonstrates encouraging feasibility, safety, and efficacy outcomes.

8.
Vet Res ; 55(1): 123, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334484

RESUMO

Porcine epidemic diarrhea virus (PEDV) has emerged in American countries, and it has reemerged in Asia and Europe, causing significant economic losses to the pig industry worldwide. In the present study, the 17GXCZ-1ORF3d strain, which has a naturally large deletion at the 172-554 bp position of the ORF3 gene, together with the 17GXCZ-1ORF3c strain, was serially propagated in Vero cells for up to 120 passages. The adaptability of the two strains gradually increased through serial passages in vitro. Genetic variation analysis of the variants of the two strains from different generations revealed that the naturally truncated ORF3 gene in the 17GXCZ-1ORF3d variants was stably inherited. Furthermore, the survival, viral shedding and histopathological lesions following inoculation of piglets demonstrated that the virulence of 17GXCZ-1ORF3d-P120 was significantly attenuated. These results indicate that the naturally truncated ORF3 gene may accelerate the attenuation of virulence and is involved in PEDV virulence together with mutations in other structural genes. Importantly, immunization of sows with G2b 17GXCZ-1ORF3d-P120 increased PEDV-specific IgG and IgA antibody levels in piglets and conferred partial passive protection against heterologous G2a PEDV strains. Our findings suggest that an attenuated strain with a truncated ORF3 gene may be a promising candidate for protection against PEDV.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/patogenicidade , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/virologia , Virulência , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Células Vero , Chlorocebus aethiops , Variação Genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Arch Virol ; 169(2): 25, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214826

RESUMO

Senecavirus A (SVA) is an emerging virus that causes vesicular disease in pigs. Construction of a full-length SVA cDNA clone is crucial for understanding its replication and pathogenesis. Here, we successfully constructed a CMV-promoter-driven infectious cDNA clone of the SVA isolate SVA/GX/CH/2018, which we named rSVA GX01. Sequence comparison between the pSVA GX01 and the parental isolate (SVA/GX/CH/2018) revealed three single-nucleotide differences. Four-week-old piglets were experimentally infected with either the parental virus or the cloned virus. The results showed that the cloned rSVA GX01 displayed weak pathogenicity in 4-week-old pigs compared to the parental virus SVA CH-GX-01-2018. The infectious clone of SVA will serve as a valuable tool for studying the viral replication cycle and for functional analysis of the viral genome.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Animais , Suínos , DNA Complementar/genética , Células Clonais/patologia
10.
Arch Virol ; 169(2): 22, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193974

RESUMO

African swine fever (ASF) is an infectious disease caused by ASF virus (ASFV), which is characterized by high infectivity, rapid onset of disease, and a high mortality rate. Outbreaks of ASFV have caused great economic losses to the global pig industry, and there is a need to develop safe and effective vaccines. In this study, two recombinant pseudorabies virus (PRV) strains, rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L, expressing the EP364R and B119L protein, respectively, of ASFV, were constructed by homologous recombination technology. Western blotting and immunofluorescence analysis showed that these foreign proteins were expressed in cells infected with the recombinant strains. The strains showed good genetic stability and proliferative characteristics for 20 passages in BHK-21 cells. Both of these strains were immunogenic in mice, inducing the production of specific antibodies against the expressed ASFV proteins while providing protection against lethal challenge with PRV. Thus, the recombinant strains rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L could be used as candidate vaccines for both ASFV and PRV. In addition, our study identifies two potential target genes for the development of safe and efficient ASFV vaccines, provides a reference for the construction of bivalent ASFV and PRV vaccines, and demonstrates the feasibility of developing a live ASFV vector vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Herpesvirus Suídeo 1 , Animais , Camundongos , Suínos , Vírus da Febre Suína Africana/genética , Herpesvirus Suídeo 1/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas , Imunidade
11.
Acta Pharmacol Sin ; 45(3): 531-544, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919475

RESUMO

Cardiac inflammation contributes to heart failure (HF) induced by isoproterenol (ISO) through activating ß-adrenergic receptors (ß-AR). Recent evidence shows that myeloid differentiation factor 2 (MD2), a key protein in endotoxin-induced inflammation, mediates inflammatory heart diseases. In this study, we investigated the role of MD2 in ISO-ß-AR-induced heart injuries and HF. Mice were infused with ISO (30 mg·kg-1·d-1) via osmotic mini-pumps for 2 weeks. We showed that MD2 in cardiomyocytes and cardiac macrophages was significantly increased and activated in the heart tissues of ISO-challenged mice. Either MD2 knockout or administration of MD2 inhibitor L6H21 (10 mg/kg every 2 days, i.g.) could prevent mouse hearts from ISO-induced inflammation, remodelling and dysfunction. Bone marrow transplantation study revealed that both cardiomyocyte MD2 and bone marrow-derived macrophage MD2 contributed to ISO-induced cardiac inflammation and injuries. In ISO-treated H9c2 cardiomyocyte-like cells, neonatal rat primary cardiomyocytes and primary mouse peritoneal macrophages, MD2 knockout or pre-treatment with L6H21 (10 µM) alleviated ISO-induced inflammatory responses, and the conditioned medium from ISO-challenged macrophages promoted the hypertrophy and fibrosis in cardiomyocytes and fibroblasts. We demonstrated that ISO induced MD2 activation in cardiomyocytes via ß1-AR-cAMP-PKA-ROS signalling axis, and induced inflammatory responses in macrophages via ß2-AR-cAMP-PKA-ROS axis. This study identifies MD2 as a key inflammatory mediator and a promising therapeutic target for ISO-induced heart failure.


Assuntos
Insuficiência Cardíaca , Miócitos Cardíacos , Ratos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Isoproterenol/toxicidade , Receptores Adrenérgicos beta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Macrófagos/metabolismo
12.
Acta Pharmacol Sin ; 45(8): 1618-1631, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38641745

RESUMO

Hypertension is a prominent contributor to vascular injury. Deubiquinatase has been implicated in the regulation of hypertension-induced vascular injury. In the present study we investigated the specific role of deubiquinatase YOD1 in hypertension-induced vascular injury. Vascular endothelial endothelial-mesenchymal transition (EndMT) was induced in male WT and YOD1-/- mice by administration of Ang II (1 µg/kg per minute) via osmotic pump for four weeks. We showed a significantly increased expression of YOD1 in mouse vascular endothelial cells upon Ang II stimulation. Knockout of YOD1 resulted in a notable reduction in EndMT in vascular endothelial cells of Ang II-treated mouse; a similar result was observed in Ang II-treated human umbilical vein endothelial cells (HUVECs). We then conducted LC-MS/MS and co-immunoprecipitation (Co-IP) analyses to verify the binding between YOD1 and EndMT-related proteins, and found that YOD1 directly bound to ß-catenin in HUVECs via its ovarian tumor-associated protease (OTU) domain, and histidine at 262 performing deubiquitination to maintain ß-catenin protein stability by removing the K48 ubiquitin chain from ß-catenin and preventing its proteasome degradation, thereby promoting EndMT of vascular endothelial cells. Oral administration of ß-catenin inhibitor MSAB (20 mg/kg, every other day for four weeks) eliminated the protective effect of YOD1 deletion on vascular endothelial injury. In conclusion, we demonstrate a new YOD1-ß-catenin axis in regulating Ang II-induced vascular endothelial injury and reveal YOD1 as a deubiquitinating enzyme for ß-catenin, suggesting that targeting YOD1 holds promise as a potential therapeutic strategy for treating ß-catenin-mediated vascular diseases.


Assuntos
Angiotensina II , Células Endoteliais da Veia Umbilical Humana , Camundongos Endogâmicos C57BL , Camundongos Knockout , beta Catenina , Animais , beta Catenina/metabolismo , Humanos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Masculino , Camundongos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Endotélio-Mesênquima
13.
Cell Mol Life Sci ; 80(7): 184, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340199

RESUMO

Macrophage activation has been shown to play an essential role in renal fibrosis and dysfunction in hypertensive chronic kidney disease. Dectin-1 is a pattern recognition receptor that is also involved in chronic noninfectious diseases through immune activation. However, the role of Dectin-1 in Ang II-induced renal failure is still unknown. In this study, we found that Dectin-1 expression on CD68 + macrophages was significantly elevated in the kidney after Ang II infusion. We assessed the effect of Dectin-1 on hypertensive renal injury using Dectin-1-deficient mice infused by Angiotensin II (Ang II) at 1000 ng/kg/min for 4 weeks. Ang II-induced renal dysfunction, interstitial fibrosis, and immune activation were significantly attenuated in Dectin-1-deficient mice. A Dectin-1 neutralizing antibody and Syk inhibitor (R406) were used to examine the effect and mechanism of Dectin-1/Syk signaling axle on cytokine secretion and renal fibrosis in culturing cells. Blocking Dectin-1 or inhibiting Syk significantly reduced the expression and secretion of chemokines in RAW264.7 macrophages. The in vitro data showed that the increase in TGF-ß1 in macrophages enhanced the binding of P65 and its target promotor via the Ang II-induced Dectin-1/Syk pathway. Secreted TGF-ß1 caused renal fibrosis in kidney cells through Smad3 activation. Thus, macrophage Dectin-1 may be involved in the activation of neutrophil migration and TGF-ß1 secretion, thereby promoting kidney fibrosis and dysfunction.


Assuntos
Angiotensina II , Hipertensão Renal , Camundongos , Animais , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Neutrófilos/metabolismo , Rim/metabolismo , Hipertensão Renal/metabolismo , Hipertensão Renal/patologia , Macrófagos/metabolismo , Fibrose
14.
Environ Toxicol ; 39(1): 435-443, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37792543

RESUMO

Soluble E-cadherin (sE-cad) is an 80 kDa fragment derived from E-cadherin that is shed from the cell surface through proteolytic cleavage and is a biomarker in various cancers that promotes invasion and migration. Alveolar epithelial destruction, aberrant lung fibroblast migration and inflammation contribute to pulmonary fibrosis. Here, we hypothesized that E-cadherin plays an important role in lung fibrosis. In this study, we found that E-cadherin was markedly increased in the bronchoalveolar lavage fluid (BALF) and serum of mice with pulmonary fibrosis and that blocking sE-cad with HECD-1, a neutralizing antibody targeting the ectodomain of E-cadherin, effectively inhibited myofibroblast accumulation and collagen deposition in the lungs after bleomycin (BLM) exposure. Moreover, transforming growth factor-ß (TGF-ß1) induced the shedding of sE-cad from A549 cells, and treatment with HECD-1 inhibited epithelial-mesenchymal transition (EMT) stimulated by TGF-ß1. Fc-E-cadherin (Fc-Ecad), which is an exogenous form of sE-cad, robustly promoted lung fibroblast migration. E-cadherin participates in bleomycin (BLM)-induced lung fibrosis by promoting EMT in the alveolar epithelium and fibroblast activation. E-cadherin may be a novel therapeutic target for lung fibrosis.


Assuntos
Caderinas , Transição Epitelial-Mesenquimal , Fibrose Pulmonar , Animais , Camundongos , Bleomicina/toxicidade , Caderinas/metabolismo , Fibroblastos/metabolismo , Pulmão , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
15.
BMC Genomics ; 24(1): 260, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37173651

RESUMO

BACKGROUND: Human primary hepatocytes (PHCs) are considered to be the best cell source for cell-based therapies for the treatment of end-stage liver disease and acute liver failure. To obtain sufficient and high-quality functional human hepatocytes, we have established a strategy to dedifferentiate human PHCs into expandable hepatocyte-derived liver progenitor-like cells (HepLPCs) through in vitro chemical reprogramming. However, the reduced proliferative capacity of HepLPCs after long-term culture still limits their utility. Therefore, in this study, we attempted to explore the potential mechanism related to the proliferative ability of HepLPCs in vitro culture. RESULTS: In this study, analysis of assay for transposase accessible chromatin using sequencing (ATAC-seq) and RNA sequencing (RNA-seq) were performed for PHCs, proliferative HepLPCs (pro-HepLPCs) and late-passage HepLPCs (lp-HepLPCs). Genome-wide transcriptional and chromatin accessibility changes during the conversion and long-term culture of HepLPCs were studied. We found that lp-HepLPCs exhibited an aged phenotype characterized by the activation of inflammatory factors. Epigenetic changes were found to be consistent with our gene expression findings, with promoter and distal regions of many inflammatory-related genes showing increased accessibility in the lp-HepLPCs. FOSL2, a member of the AP-1 family, was found to be highly enriched in the distal regions with increased accessibility in lp-HepLPCs. Its depletion attenuated the expression of aging- and senescence-associated secretory phenotype (SASP)-related genes and resulted in a partial improvement of the aging phenotype in lp-HepLPCs. CONCLUSIONS: FOSL2 may drive the aging of HepLPCs by regulating inflammatory factors and its depletion may attenuate this phenotypic shift. This study provides a novel and promising approach for the long-term in vitro culture of HepLPCs.


Assuntos
Senescência Celular , Sequenciamento de Cromatina por Imunoprecipitação , Cromatina , Antígeno 2 Relacionado a Fos , Humanos , Senescência Celular/genética , Cromatina/genética , Antígeno 2 Relacionado a Fos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fígado , RNA-Seq
16.
Basic Res Cardiol ; 118(1): 40, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782407

RESUMO

Activation of gasdermin D (GSDMD) and its concomitant cardiomyocyte pyroptosis are critically involved in multiple cardiac pathological conditions. Pharmacological inhibition or gene knockout of GSDMD could protect cardiomyocyte from pyroptosis and dysfunction. Thus, seeking and developing highly potent GSDMD inhibitors probably provide an attractive strategy for treating diseases targeting GSDMD. Through structure-based virtual screening, pharmacological screening and subsequent pharmacological validations, we preliminarily identified GSDMD inhibitor Y1 (GI-Y1) as a selective GSDMD inhibitor with cardioprotective effects. Mechanistically, GI-Y1 binds to GSDMD and inhibits lipid- binding and pyroptotic pore formation of GSDMD-N by targeting the Arg7 residue. Importantly, we confirmed the cardioprotective effect of GI-Y1 on myocardial I/R injury and cardiac remodeling by targeting GSDMD. More extensively, GI-Y1 also inhibited the mitochondrial binding of GSDMD-N and its concomitant mitochondrial dysfunction. The findings of this study identified a new drug (GI-Y1) for the treatment of cardiac disorders by targeting GSDMD, and provide a new tool compound for pyroptosis research.


Assuntos
Cardiopatias , Traumatismo por Reperfusão , Humanos , Piroptose , Miócitos Cardíacos , Isquemia , Proteínas de Ligação a Fosfato , Proteínas Citotóxicas Formadoras de Poros
17.
J Magn Reson Imaging ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38156427

RESUMO

BACKGROUND: Deep learning has presented great potential in accurate MR image segmentation when enough labeled data are provided for network optimization. However, manually annotating three-dimensional (3D) MR images is tedious and time-consuming, requiring experts with rich domain knowledge and experience. PURPOSE: To build a deep learning method exploring sparse annotations, namely only a single two-dimensional slice label for each 3D training MR image. STUDY TYPE: Retrospective. POPULATION: Three-dimensional MR images of 150 subjects from two publicly available datasets were included. Among them, 50 (1377 image slices) are for prostate segmentation. The other 100 (8800 image slices) are for left atrium segmentation. Five-fold cross-validation experiments were carried out utilizing the first dataset. For the second dataset, 80 subjects were used for training and 20 were used for testing. FIELD STRENGTH/SEQUENCE: 1.5 T and 3.0 T; axial T2-weighted and late gadolinium-enhanced, 3D respiratory navigated, inversion recovery prepared gradient echo pulse sequence. ASSESSMENT: A collaborative learning method by integrating the strengths of semi-supervised and self-supervised learning schemes was developed. The method was trained using labeled central slices and unlabeled noncentral slices. Segmentation performance on testing set was reported quantitatively and qualitatively. STATISTICAL TESTS: Quantitative evaluation metrics including boundary intersection-over-union (B-IoU), Dice similarity coefficient, average symmetric surface distance, and relative absolute volume difference were calculated. Paired t test was performed, and P < 0.05 was considered statistically significant. RESULTS: Compared to fully supervised training with only the labeled central slice, mean teacher, uncertainty-aware mean teacher, deep co-training, interpolation consistency training (ICT), and ambiguity-consensus mean teacher, the proposed method achieved a substantial improvement in segmentation accuracy, increasing the mean B-IoU significantly by more than 10.0% for prostate segmentation (proposed method B-IoU: 70.3% ± 7.6% vs. ICT B-IoU: 60.3% ± 11.2%) and by more than 6.0% for left atrium segmentation (proposed method B-IoU: 66.1% ± 6.8% vs. ICT B-IoU: 60.1% ± 7.1%). DATA CONCLUSIONS: A collaborative learning method trained using sparse annotations can segment prostate and left atrium with high accuracy. LEVEL OF EVIDENCE: 0 TECHNICAL EFFICACY: Stage 1.

18.
Arch Virol ; 168(12): 285, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938380

RESUMO

Pseudorabies virus (PRV) is an important pathogen that can cause harm to the pig population. Since 2011, there have been a number of large-scale outbreaks of pseudorabies on Chinese farms where animals had been vaccinated with the Bartha-K61 vaccine. In order to understand the epidemiological trend and genetic variations of PRV in Guangxi province, China, 819 tissue samples were collected from swine farms where PRV infection was suspected from 2013 to 2019, and these were tested for infectious wild strains of PRV. The results showed a positive rate of PRV in Guangxi province of 28.21% (231/819). Thirty-six wild-type PRV strains were successfully isolated from PRV-positive tissue samples, and a genetic evolutionary analysis was performed based on the gB, gC, gD, gE, and TK genes. Thirty of the PRV strains were found to be closely related to the Chinese variant strains HeN1-China-2012 and HLJ8-China-2013. In addition, five PRV strains were genetically related to Chinese classical strains, and one isolate was a recombinant of the PRV variant and the vaccine strain Bartha-K61. Amino acid sequence analysis showed that all 36 PRV strains had characteristic variant sites in the amino acid sequences of the gB, gC, gD, and gE proteins. Pathogenicity analysis showed that, compared to classical PRV strains, the PRV variant strains were more pathogenic in mice and had a lower LD50. Taken together, our results show that wild-type PRV infections are common on pig farms in Guangxi province of China and that the dominant prevalent strains were those of the PRV variants. The PRV variant strains also had increased pathogenicity in mice. Our data will provide a useful reference for understanding the prevalence and genetic evolution of PRV in China.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Vacinas , Animais , Camundongos , Suínos , Herpesvirus Suídeo 1/genética , China/epidemiologia , Epidemiologia Molecular , Pseudorraiva/epidemiologia
19.
Europace ; 25(4): 1208-1236, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061848

RESUMO

Conduction system pacing (CSP) has emerged as a more physiological alternative to right ventricular pacing and is also being used in selected cases for cardiac resynchronization therapy. His bundle pacing was first introduced over two decades ago and its use has risen over the last five years with the advent of tools which have facilitated implantation. Left bundle branch area pacing is more recent but its adoption is growing fast due to a wider target area and excellent electrical parameters. Nevertheless, as with any intervention, proper technique is a prerequisite for safe and effective delivery of therapy. This document aims to standardize the procedure and to provide a framework for physicians who wish to start CSP implantation, or who wish to improve their technique.


Assuntos
Terapia de Ressincronização Cardíaca , Sistema de Condução Cardíaco , Humanos , América Latina , Canadá , Doença do Sistema de Condução Cardíaco , Fascículo Atrioventricular
20.
Europace ; 25(4): 1237-1248, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061850

RESUMO

Conduction system pacing (CSP) has emerged as a more physiological alternative to right ventricular pacing and is also being used in selected cases for cardiac resynchronization therapy. His bundle pacing was first introduced over two decades ago and its use has risen over the last years with the advent of tools which have facilitated implantation. Left bundle branch area pacing is more recent but its adoption is growing fast due to a wider target area and excellent electrical parameters. Nevertheless, as with any intervention, proper technique is a prerequisite for safe and effective delivery of therapy. This document aims to standardize the procedure and to provide a framework for physicians who wish to start CSP implantation, or who wish to improve their technique. A synopsis is provided in this print edition of EP-Europace. The full document may be consulted online, and a 'Key Messages' App can be downloaded from the EHRA website.


Assuntos
Sistema de Condução Cardíaco , Humanos , Canadá , Doença do Sistema de Condução Cardíaco , Ásia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA