Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Foodborne Pathog Dis ; 20(7): 294-302, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37347934

RESUMO

Staphylococcus aureus can cause bacterial food intoxication and seriously affect human health. Tea polyphenols (TP) are a kind of natural, safe, and broad-spectrum bacteriostatic substances, with a wide range of bacteriostatic effects. In the study, we explored the possible bacteriostatic mode of TP. The minimum inhibitory concentration of TP against S. aureus was 64 µg/mL. Protein, DNA, and K+ leak experiments, fluorescence microscopy, and transmission electron microscopy suggested that TP disrupt cell membranes, leading to intracellular component loss. By studying the effect of TP on the toxicity of S. aureus, it was found that the expression levels of two toxin genes, coa and spa, were downregulated by 2.37 and 32.6, respectively. Furthermore, after treatment with TP, a large number of reactive oxygen species (ROS) were propagated and released, leading to oxidative stress in cells. We speculated that the bacteriostatic mechanism of TP may be through the destruction of the cell membrane and ROS-mediated oxidative stress. Meanwhile, the hemolysis activity proved the safety of TP. Our results suggested that TP may be a potential antimicrobial agent for food.


Assuntos
Polifenóis , Staphylococcus aureus , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Polifenóis/farmacologia , Chá , Membrana Celular
2.
Mikrochim Acta ; 190(5): 186, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071204

RESUMO

To meet high-throughput screening of the residues of sulfonamides (SAs) with high sensitivity toward sulfamethazine (SM2) in milk samples, a new highly sensitive lateral flow immunoassay (LFA) based on amorphous carbon nanoparticles (ACNs) was developed. First, a group-specific monoclonal antibody 10H7 (mAb 10H7) that could recognize 25 SAs with high sensitivity toward SM2 (IC50 value of 0.18 ng/mL) was prepared based on H1 as an immune hapten and H4 as a heterologous coating hapten. Then, mAb 10H7 was conjugated to ACNs as an immune probe for LFA development. Under the optimized conditions, the LFA could detect 25 SAs with the cut-off value toward SM2 of 2 ng/mL, which could meet the requirement for detection of SAs. In addition, the LFA developed was also used for screening SAs' residues in real milk samples, with results being consistent with HPLC-MS/MS. Thus, this LFA can be used as a high-throughput screening tool for detection of SAs.


Assuntos
Anticorpos Monoclonais , Nanopartículas , Animais , Leite/química , Sulfonamidas/análise , Espectrometria de Massas em Tandem , Imunoensaio/métodos , Sulfanilamida/análise , Haptenos , Carbono
3.
Mikrochim Acta ; 191(1): 42, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114730

RESUMO

To avoid false negative results due to the low cross-reactivity rate (CR) in rapid immunoassay, a group-specific antibody with homogeneous CR toward target compounds is needed for accuracy. In this study, tylosin (TYL) and tilmicosin (TM) were selected as model molecules. Firstly, two-dimensional similarity, electrostatic potential energy, spatial conformation and charge distribution of the haptens TYL-CMO, TYL-6-ACA, TYL-4-APA, TYL-CHO and DES-CMO and target compounds of TYL and TM were obtained using Gaussian 09W and Discovery Studio. The optimal hapten was DES-CMO because it is the most similar to TYL and TM. Subsequently, the mAb 14D5 cell line was obtained with IC50 values of 1.59 and 1.72 ng/mL for TYL and TM, respectively, and a CR of 92.44%. Finally, amorphous carbon nanoparticles (ACNPs) were conjugated with mAb 14D5 to develop an accurate lateral flow immunoassay (LFA) for detection of TYL and TM by the reflectance value under natural light. The recoveries of TYL and TM ranged from 77.18 to 112.04% with coefficient of variation < 13.43%. The cut-off value in milk samples was 8 ng/mL, and the limits of detection were 11.44, 15.96, 22.29 and 25.53 µg/kg for chicken muscle, bovine muscle, porcine muscle and porcine liver samples, respectively, and the results being consistent with HPLC-UV. The results suggest that the developed LFA is accurate and potentially useful for on-site screening of TYL and TM in milk and animal tissue samples.


Assuntos
Anticorpos Monoclonais , Tilosina , Animais , Bovinos , Suínos , Ensaio de Imunoadsorção Enzimática/métodos , Imunoensaio , Haptenos
4.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175313

RESUMO

Increasing evidence shows that selenium and polyphenols are two types of the most reported compounds in tumor chemoprevention due to their remarkable antitumor activity and high safety profile. The cross-talk between polyphenols and selenium is a hot research topic, and the combination of polyphenols and selenium is a valuable strategy for fighting cancer. The current work investigated the combination anti-peritoneal carcinomatosis (PC) effect of selenium nanoparticles (SeNPs) and green tea (Camellia sinensis) polyphenol (-)-epigallocatechin-3-gallate (EGCG) in mice bearing murine hepatocarcinoma 22 (H22) cells. Results showed that SeNPs alone significantly inhibited cancer cell proliferation and extended the survival time of mice bearing H22 cells. Still, the potential therapeutic efficacy is accompanied by an approximately eighty percent diarrhea rate. When EGCG was combined with SeNPs, EGCG did not affect the tumor proliferation inhibition effect but eliminated diarrhea triggered by SeNPs. In addition, both the intracellular selectively accumulated EGCG without killing effect on cancer cells and the enhanced antioxidant enzyme levels in ascites after EGCG was delivered alone by intraperitoneal injection indicated that H22 cells were insensitive to EGCG. Moreover, EGCG could prevent SeNP-caused systemic oxidative damage by enhancing serum superoxide dismutase, glutathione, and glutathione peroxidase levels in healthy mice. Overall, we found that H22 cells are insensitive to EGCG, but combining EGCG with SeNPs could protect against SeNP-triggered diarrhea without compromising the suppressing efficacy of SeNPs on PC in mice bearing H22 cells and attenuate SeNP-caused systemic toxicity in healthy mice. These results suggest that EGCG could be employed as a promising candidate for preventing the adverse reactions of chemotherapy including chemotherapy-induced diarrhea and systemic toxicity in cancer individuals.


Assuntos
Catequina , Nanopartículas , Neoplasias , Selênio , Animais , Camundongos , Selênio/farmacologia , Catequina/farmacologia , Polifenóis/farmacologia , Chá , Diarreia
5.
Mol Microbiol ; 116(2): 690-706, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097792

RESUMO

Pseudomonas chlororaphis HT66 exhibits strong antagonistic activity against various phytopathogenic fungi due to its main antibiotic phenazine-1-carboxamide (PCN). PCN gene cluster consists of phzABCDEFG, phzH, phzI, and phzR operons. phzABCDEFG transcription is activated by the PhzI/R quorum sensing system. Deletion of the lon gene encoding an ATP-dependent protease resulted in significant enhancement of PCN production in strain HT66. However, the regulatory pathway and mechanism of Lon on PCN biosynthesis remain unknown. Here, lon mutation was shown to significantly improve antimicrobial activity of strain HT66. The N-acyl-homoserine lactone synthase PhzI mediates the negative regulation of PCN biosynthesis and phzABCDEFG transcription by Lon. Western blot showed that PhzI protein abundance and stability were significantly enhanced by lon deletion. The in vitro degradation assay suggested that Lon could directly degrade PhzI protein. However, Lon with an amino acid replacement (S674 -A) could not degrade PhzI protein. Lon-recognized region was located within the first 50 amino acids of PhzI. In addition, Lon formed a new autoregulatory feedback circuit to modulate its own degradation by other potential proteases. In summary, we elucidated the Lon-regulated pathway mediated by PhzI during PCN biosynthesis and the molecular mechanism underlying the degradation of PhzI by Lon in P. chlororaphis HT66.


Assuntos
Proteínas de Bactérias/metabolismo , Fenazinas/metabolismo , Protease La/metabolismo , Pseudomonas chlororaphis/metabolismo , Antifúngicos/metabolismo , Regulação para Baixo , Retroalimentação Fisiológica , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/genética , Protease La/genética , Percepção de Quorum/fisiologia
6.
Ecotoxicol Environ Saf ; 246: 114190, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36252511

RESUMO

It is well known that lead-induced neurotoxicity is closely related to oxidative stress. According to previous reports, wheat germ peptides (WGPs) isolated from wheat germ have been shown to have potent antioxidant capacity. This study hypothesized that WGPs could protect PC12 cells from lead-induced oxidative stress. Here, the protecting-efficacies of WGPs were investigated in PC12 cells that were pretreated with WGPs (200 µM, 4 h) and exposed to lead (10 µM, 24 h). The antioxidant capacity was assessed by cell viability, ROS, MDA, SOD, CAT, GR, GPx, GSH, and GSSG. The experimental results showed that WGP3, WGP8, and WGP9 could reverse the reduction of cell viability caused by lead exposure. Lead exposure causes oxidative stress by increasing the levels of ROS and MDA. Moreover, the decrease in the levels of SOD, CAT, GPx, GR, and GSH/GSSG could be observed. However, WGP3, WGP8, and WGP9 can protect PC12 cells against lead-induced oxidative stress by reversing these phenomena. The protein expression of TXNIP, Keap1, and Nrf2 was characterized by western blotting, and the results illustrated that lead exposure up-regulated the expression of TXNIP and Keap1 and down-regulated the expression of Nrf2, and WGP3, WGP8, and WGP9 could improve the antioxidant capacity of PC12 cells by reversing this phenomenon. Therefore, the present study demonstrated that WGP3, WGP8, and WGP9 may protect against lead-induced oxidative stress in PC12 cells by regulating the TXNIP/Keap1/Nrf2 pathway.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Células PC12 , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Triticum/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Dissulfeto de Glutationa/metabolismo , Chumbo/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Proteínas de Ciclo Celular/metabolismo
7.
Mikrochim Acta ; 189(3): 132, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239046

RESUMO

Enzyme-like nanomaterials have received significant attention for their high stability and low cost. However, most nanomaterials require complicated synthesis processes, limiting the range of their potential applications. In this study, a novel cerium-based nanomaterial was fabricated in a facile manner from a mixture of dipicolinic acid (DPA), guanosine 5'-monophosphate (GMP), and cerium acetate under ambient conditions. The obtained nanomaterial, designated as DPA-Ce-GMP, exhibited superior oxidase-like activity owing to the mixed valence (Ce3+/Ce4+) of cerium ions. DPA-Ce-GMP efficiently catalyzed the oxidation of 3,3,5,5-tetramethylbenzidine (TMB), achieving a color reaction without requiring hydrogen peroxide. Thus, DPA-Ce-GMP was incorporated into a simple, rapid, and sensitive colorimetric sensor for glutathione (GSH) detection. Within this sensor, TMB oxidation is inhibited by the reducibility of GSH. The sensor exhibits a linear response over two concentration ranges (0.05-10 and 10-40 µM), and its detection limit is 17.1 nM (3σ/slope). The proposed sensor was successfully applied to GSH quantification in food samples. The developed sensor provides an efficient biomimic oxidase for GSH detection in real samples. Facile approach to prepare cerium-based nanomaterial with superior oxidase-like activity for colorimetric detection of glutathione in food samples.


Assuntos
Cério , Nanoestruturas , Colorimetria , Glutationa , Oxirredutases
8.
Antonie Van Leeuwenhoek ; 114(11): 1745-1757, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34529163

RESUMO

Salmonella infections in eggs with increasing morbidity and mortality exhibit worldwide prevalence. The present study intends to evaluate the efficacy of Lactobacillus reuteri Lb11 (L. reuteri Lb11, isolated from chicken intestinal tract) in inhibiting the growth of multi-drug resistant (MDR) Salmonella Enteritidis SE05 (obtained from egg content). The cell-free cell lysates (CFCL) of L. reuteri Lb11 obtained by the agar spot test performed well on inhibition of the MDR (Multi-Drug Resistant) Salmonella Enteritidis SE05, The heat-inactivated (HI) fraction of L. reuteri Lb11 showed no inhibition activity. By co-culturing with L. reuteri Lb11 in vitro, the growth of S. Enteritidis SE05 decreased along with time, while, the pH value decreased significantly. Furthermore, In order to evaluate the mechanism of action of CFCL of L.reuteri Lb11, the genes related to the transcription level of AcrAB-TolC efflux pump, outer membrane protein OMPs genes and drug resistance genes have been quantified by real-time PCR, when the S. Enteritidis was SE05 exposed to the CFCL of L. reuteri Lb11 (1 × 1012 CFU/mL). Almost all of the AcrAB-TolC efflux pump genes, outer membrane protein genes and antibiotic resistance genes were down-regulated. Especially, the level of ramA, tetA and tetB genes were down-regulated -20.77, -15.85 and -12.42 folds, respectively. L. reuteri Lb11 can effectively prevent the formation of efflux pump to inhibit the production of multidrug-resistant Salmonella Enteritidis in eggs.


Assuntos
Limosilactobacillus reuteri , Salmonelose Animal , Animais , Galinhas , Intestinos , Salmonella enteritidis/genética
9.
Ecotoxicol Environ Saf ; 211: 111917, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497860

RESUMO

Lead (Pb) is a heavy metal environmental pollutant that can cause functional damage and anemia of immune organs. More and more evidence indicate that the toxicity of lead was related to apoptosis driven by oxidative stress and endoplasmic reticulum stress. This article mainly discusses the protective effect and mechanism of folic acid intervention on lead-induced spleen injury and apoptosis. In this study, Sprague-Dawley rats were randomly divided into control group, lead exposure group (0.2% lead acetate), folic acid + lead group (0.4 mg/kg folic acid and 0.2% lead acetate), and folic acid group (0.4 mg/kg folic acid). By recording and calculating the rat's initial body weight, final body weight, net weight gain, daily weight gain, and spleen index, observe the rat's weight change and spleen weight. And adopt the immunofluorescence staining method to determine the expression level of NrF2, HO-1, GRP78, CHOP protein in the spleen. The results showed that The 0.4 mg/kg folic acid diet did not significantly improve in the body weight and spleen index of lead-exposed rats (P > 0.05). While compared with the control group, the expression levels of HO-1 and CHOP protein were significantly increased in the lead exposure group (P < 0.05), and the expression levels of HO-1 and CHOP protein were significantly reduced in the folic acid intervention group (P < 0.05). In conclusion, lead exposure increased the expression levels of HO-1 and CHOP in the spleen of rats, and caused damage to the spleen. Folic acid down-regulated the expression levels of HO-1 and CHOP proteins through the two pathways of NrF2/HO-1 and GRP78/CHOP, thereby exerting a certain protective effect and alleviating the spleen caused by lead-induced oxidative stress and endoplasmic reticulum stress damage.


Assuntos
Ácido Fólico/farmacologia , Compostos Organometálicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Baço/efeitos dos fármacos , Acetatos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ácido Fólico/metabolismo , Chumbo/metabolismo , Masculino , Fator 2 Relacionado a NF-E2 , Ratos , Ratos Sprague-Dawley , Baço/metabolismo , Baço/fisiologia
10.
Mikrochim Acta ; 188(2): 59, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507410

RESUMO

A homogeneous fluorescence quenching immunoassay is described for simultaneous separation and detection of aflatoxin M1 (AFM1) in milk. The novel assay relies on monoclonal antibody (mAb) functionalized Fe3O4 decorated reduced-graphene oxide (rGO-Fe3O4-mAb) as both capture probe and energy acceptor, combined with tetramethylrhodamine cadaverine-labeled aflatoxin B1 (AFB1-TRCA) as the energy donor. In the assay, AFB1-TRCA binds to rGO-Fe3O4-mAb in the absence of AFM1, quenching the fluorescence of TRCA by resonance energy transfer. Significantly, the immunoassay integrates sample preparation and detection into a single step, by using magnetic graphene composites to avoid washing and centrifugation steps, and the assay can be completed within 10 min. Under optimized conditions, the visual and quantitative detection limits of the assay for AFM1 were 50 and 3.8 ng L-1, respectively, which were significantly lower than those obtained by fluorescence polarization immunoassay using the same immunoreagents. Owing to its operation and highly sensitivity, the proposed assay provides a powerful tool for the detection of AFM1.


Assuntos
Aflatoxina M1/análise , Grafite/química , Imunoensaio/métodos , Nanopartículas de Magnetita/química , Aflatoxina B1/química , Aflatoxina B1/imunologia , Aflatoxina M1/imunologia , Animais , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais/imunologia , Cadaverina/química , Corantes Fluorescentes/química , Contaminação de Alimentos/análise , Limite de Detecção , Leite/química , Reprodutibilidade dos Testes , Rodaminas/química , Espectrometria de Fluorescência
11.
Toxicol Ind Health ; 37(2): 59-67, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33305700

RESUMO

The bromoalkane, 1-bromopropane (1-BP), may damage the reproductive system though oxidative stress, while the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in regulating intracellular antioxidant levels against oxidative stress. This study explored the role of oxidative stress and the Nrf2 signaling pathway in mediating the reproductive toxicity of 1-BP using the ovarian carcinoma cell line OVCAR-3 as an in vitro model of the human ovary. OVCAR-3 cells were treated with 1, 5, 10 and 15 mM 1-BP. After 24 h, the cellular reactive oxygen species and malondialdehyde concentrations significantly increased, while the superoxide dismutase activity decreased; translocation of Nrf2 from the cytosol to the nucleus as well as downstream protein expression of Nrf2-regulated genes heme oxygenase-1 and Bcl-2 was inhibited. Apoptosis was also observed, accompanied by increased caspase-3 and caspase-9 activity. The antioxidant vitamin C alleviated 1-BP-induced apoptosis by inhibiting caspase activity activating the Nrf2 signaling pathway. These findings suggested that 1-BP induced oxidative stress and apoptosis in OVCAR-3 cells through inactivation of Nrf2 signaling.


Assuntos
Apoptose/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Ovarianas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Ácido Ascórbico/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Hidrocarbonetos Bromados/toxicidade , Transdução de Sinais/efeitos dos fármacos
12.
Occup Environ Med ; 77(3): 201-206, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32024660

RESUMO

OBJECTIVES: Trichloroethylene (TCE) -induced hypersensitivity syndrome (TIHS) is a potentially life-threatening disease. Several genetic susceptibility biomarkers have been found to be associated with TIHS, and this systematic prospective study has been conducted to evaluate the utility of these genetic susceptibility biomarkers in preventing the disease. METHODS: The newly hired TCE-exposed workers were recruited from March 2009 to October 2010. HLA-B*13:01 genotyping and 3-month follow-up procedure were conducted. All workers were monitored for adverse reaction by telephone interview every week. The workers with early symptoms of TIHS were asked to go to the hospital immediately for further examination, diagnosis and treatment. The medical expense record data of patients with TIHS were collected for cost-effectiveness analysis in 2018. RESULTS: Among 1651 workers, 158 (9.57%) were found to carry the HLA-B*13:01 allele and 16 (0.97%) were diagnosed with TIHS. HLA-B*13:01 allele was significantly associated with an increased TIHS risk (relative risk=28.4, 95% CI 9.2 to 86.8). As a risk predictor of TIHS, HLA-B*13:01 testing had a sensitivity of 75%, a specificity of 91.1% and an area under curve of 0.83 (95% CI 0.705 to 0.955), the positive and negative predictive values were 7.6% and 99.7%, respectively. The incidence of TIHS was significantly decreased in HLA-B*13:01 non-carriers (0.27%) compared with all workers (0.97%, p=0.014). Cost-effectiveness analysis showed that HLA-B*13:01 screening could produce an economic saving of $4604 per TIHS avoided. CONCLUSIONS: Prospective HLA-B*13:01 screening may significantly reduce the incidence of TIHS and could be a cost effective option for preventing the disease in TCE-exposed workers.


Assuntos
Dermatite/genética , Hipersensibilidade a Drogas/genética , Antígenos HLA-B/genética , Exposição Ocupacional , Tricloroetileno/efeitos adversos , Adulto , Biomarcadores , China , Análise Custo-Benefício , Dermatite/prevenção & controle , Hipersensibilidade a Drogas/prevenção & controle , Feminino , Predisposição Genética para Doença , Humanos , Modelos Logísticos , Masculino , Programas de Rastreamento/economia , Polimorfismo Genético , Valor Preditivo dos Testes , Estudos Prospectivos , Adulto Jovem
13.
Appl Microbiol Biotechnol ; 104(7): 3061-3079, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32009198

RESUMO

Pseudomonas protegens H78 produces multiple secondary metabolites, including antibiotics and iron carriers. The guanosine pentaphosphate or tetraphosphate ((p)ppGpp)-mediated stringent response is utilized by bacteria to survive during nutritional starvation and other stresses. RelA/SpoT homologues are responsible for the biosynthesis and degradation of the alarmone (p)ppGpp. Here, we investigated the global effect of relA/spoT dual deletion on the transcriptomic profiles, physiology, and metabolism of P. protegens H78 grown to mid- to late log phase. Transcriptomic profiling revealed that relA/spoT deletion globally upregulated the expression of genes involved in DNA replication, transcription, and translation; amino acid metabolism; carbohydrate and energy metabolism; ion transport and metabolism; and secretion systems. Bacterial growth was partially increased, while the cell survival rate was significantly reduced by relA/spoT deletion in H78. The utilization of some nutritional elements (C, P, S, and N) was downregulated due to relA/spoT deletion. In contrast, relA/spoT mutation globally inhibited the expression of secondary metabolic gene clusters (plt, phl, prn, ofa, fit, pch, pvd, and has). Correspondingly, antibiotic and iron carrier biosynthesis, iron utilization, and antibiotic resistance were significantly downregulated by the relA/spoT mutation. This work highlights that the (p)ppGpp-mediated stringent response regulatory system plays an important role in inhibiting primary metabolism and activating secondary metabolism in P. protegens.


Assuntos
Guanosina Pentafosfato/metabolismo , Guanosina Tetrafosfato/metabolismo , Pseudomonas/metabolismo , Metabolismo Secundário/genética , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Metabolismo Energético/genética , GTP Pirofosfoquinase/genética , GTP Pirofosfoquinase/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Viabilidade Microbiana/genética , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , Pirofosfatases/genética , Pirofosfatases/metabolismo
14.
Appl Microbiol Biotechnol ; 103(8): 3465-3476, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30868205

RESUMO

Pyoluteorin (Plt) is a PKS-NRPS hybrid antibiotic that is produced by Pseudomonas spp. and shows strong antifungal and antibacterial activities. Pseudomonas protegens H78, which was isolated from the rape rhizosphere in Shanghai, can produce a large array of secondary metabolites, including antibiotics and siderophores. Plt is produced at low levels in the H78 wild-type strain. This study aimed to improve Plt production through combinatory genetic engineered strategies. Plt production was significantly enhanced (by14.3-fold) in the strain engineered by the following steps: (1) deletion of the translational repressor gene rsmE in the Gac/Rsm-RsmE pathway; (2) deletion of the ATP-dependent protease gene lon that encodes a potential enzyme that degrades positive regulators; (3) deletion of the negative regulatory gene pltZ of the Plt ABC-type transporter operon pltIJKNOP; (4) deletion of an inhibitory sequence within the operator of the transcriptional activator gene pltR; and (5) overexpression of the pltIJKNOP transport operon. The Plt production of the final engineered strain was increased to 214 from 15 µg ml-1 in the H78 wild-type strain. In addition, the pltA gene in the pltLABCDEFG biosynthetic operon was characterized as the gene encoding the rate-limiting enzyme in the Plt biosynthetic pathway of H78. However, overexpression of the rate-limiting enzyme gene pltA or the transcriptional activator gene pltR did not further improve Plt biosynthesis in the above multiple-gene knockout strains.


Assuntos
Vias Biossintéticas/genética , Regulação Bacteriana da Expressão Gênica/genética , Fenóis/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Pirróis/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Expressão Gênica , Engenharia Metabólica
15.
Int Arch Occup Environ Health ; 92(3): 395-401, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30758654

RESUMO

PURPOSE: Occupational trichloroethylene hypersensitivity syndrome (OTHS) clinically manifests as generalized severe rash resembling drug-induced hypersensitivity syndrome (DIHS) and afflicts predominantly HLA-B*13:01 gene carriers after their exposure to trichloroethylene. Meanwhile, OTHS may also be associated with human herpesvirus such as herpesvirus-6 (HHV6) and cytomegalovirus (HCMV) reported to participate in the pathology of DIHS. This study explored the association of carrying HHV6 and HCMV, and the joint association of carrying HLA-B*13:01 and HHV6 and HCMV with OTHS. METHODS: We recruited 30 OTHS patients and 40 trichloroethylene-exposed healthy workers as cases and controls, respectively. HLA-B*13:01 was genotyped and HHV6 and HCMV DNA were detected in the DNA extracted from whole-blood sample of each participant with PCR techniques. Positive rates of HLA-B*13:01 gene and HHV6 and HCMV DNA and their association with OTHS were then analyzed. RESULTS: The OTHS cases showed significantly higher positive rates of HLA-B*13:01 gene and HHV6 DNA, but not HCMV DNA, than the controls (83.3% vs. 25.0% and 56.7% vs. 10.0%, respectively, both P < 0.001). Positive rate of HHV6 DNA was significantly higher in HLA-B*13:01 carriers than in non-carriers in the cases (68.0% vs. 0, P = 0.005), but not in the controls. Carrying HLA-B*13:01 and HHV6 had an interactive effect on OTHS (OR = 91.80, P < 0.001). CONCLUSIONS: Carrying HLA-B*13:01 and HHV6 may be associated with OTHS; furthermore, carrying HLA-B*13:01 and HHV6 may be jointly associated with OTHS.


Assuntos
Síndrome de Hipersensibilidade a Medicamentos/genética , Síndrome de Hipersensibilidade a Medicamentos/virologia , Antígenos HLA-B/genética , Herpesvirus Humano 6/isolamento & purificação , Doenças Profissionais/induzido quimicamente , Tricloroetileno/efeitos adversos , Adulto , Estudos de Casos e Controles , China , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , DNA Viral , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Doenças Profissionais/genética , Doenças Profissionais/virologia , Exposição Ocupacional/efeitos adversos , Reação em Cadeia da Polimerase em Tempo Real , Infecções por Roseolovirus/induzido quimicamente , Ativação Viral/efeitos dos fármacos
16.
Mol Microbiol ; 105(6): 968-985, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28710872

RESUMO

The Gac/Rsm regulatory pathway in Pseudomonas spp. activates the production of various secondary metabolites, such as antibiotics, siderophores and exoenzymes. However, the biosynthesis of antifungal compound pyoluteorin (Plt) in Pseudomonas protegens H78 is almost entirely inhibited by double deletion of two csrA/rsmA family genes, namely, rsmA and rsmE. Here, we investigated the complicated regulatory mechanism of RsmA and RsmE in Plt biosynthesis in P. protegens H78. RsmE negatively regulated Plt biosynthesis and pltLABCDEFG expression by directly interacting with the mRNA leaders of pltR and pltAB. Conversely, the transcription of pltL-G and pltR was positively influenced by RsmA through an uncharacterized mechanism. Further analyses demonstrated that pltL-G expression was diminished in the rsmA/E mutant. The deficiency of pltL-G expression in the gacA mutant was not reversed by any of the rsmA/E single or double mutations. The double deletion of rsmA/E reduced gacA expression by approximately 50% and almost completely inhibited the promoter activities of rsmXYZ sRNAs. The rsmY mutation significantly inhibited Plt biosynthesis. Taken together, GacS/GacA modulates Plt biosynthesis through two distinct pathways: Gac/Rsm-RsmE traditional positive regulatory cascade and RsmA-mediated positive transcriptional regulation. Moreover, a new positive feedback loop between RsmA/E and GacS/A-RsmXYZ is essential for activating Plt biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Fenóis/metabolismo , Pseudomonas/genética , Pirróis/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases/genética , Regulação Bacteriana da Expressão Gênica/genética , Metiltransferases/genética , Metiltransferases/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas/metabolismo , Transdução de Sinais
17.
Appl Microbiol Biotechnol ; 102(22): 9719-9730, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30128583

RESUMO

The rhizobacterium Pseudomonas protegens H78 biosynthesizes a number of antibiotic compounds, including pyoluteorin, 2,4-diacetylphloroglucinol, and pyrrolnitrin. Here, we investigated the global regulatory function of the nitrogen metabolism-related sigma factor RpoN in P. protegens H78 through RNA-seq and phenotypic analysis. During the mid- to late-log growth phase, transcriptomic profiling revealed that 562 genes were significantly upregulated, and 502 genes were downregulated by at least twofold at the RNA level in the rpoN deletion mutant in comparison with the wild-type strain H78. With respect to antibiotics, Plt biosynthesis and the expression of its operon were positively regulated, while Prn biosynthesis and the expression of its operon were negatively regulated by RpoN. RpoN is responsible for the global activation of operons involved in flagellar biogenesis and assembly, biofilm formation, and bacterial mobility. In contrast, RpoN was shown to negatively control a number of secretion system operons including one type VI secretion system operon (H1-T6SS), two pilus biogenesis operons (Flp/Tad-T4b pili and Csu-T1 pili), and one polysaccharide biosynthetic operon (psl). In addition, two operons that are involved in mannitol and inositol utilization are under the positive regulation of RpoN. Consistent with this result, the ability of H78 to utilize mannitol or inositol as a sole carbon source is positively influenced by RpoN. Taken together, the RpoN-mediated global regulation is mainly involved in flagellar biogenesis and assembly, bacterial mobility, biofilm formation, antibiotic biosynthesis, secretion systems, and carbon utilization in P. protegens H78.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Biofilmes , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Pseudomonas/fisiologia , RNA Polimerase Sigma 54/metabolismo , Proteínas de Bactérias/genética , Fímbrias Bacterianas/metabolismo , Pseudomonas/genética , RNA Polimerase Sigma 54/genética
18.
Biotechnol Lett ; 40(5): 837-845, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29605936

RESUMO

OBJECTIVES: To improve the Pb2+ biosorption capacity of the potential E. coli biosorbent, a putative Pb2+ binding domain (PbBD) derived from PbrR was efficiently displayed on to the E. coli cell surface. RESULTS: The PbBD was obtained by truncating the N-terminal DNA-binding domain and C-terminal redundant amino acid residues of the Pb2+-sensing transcriptional factor PbrR. Whole-cell sorbents were constructed with the full-length PbrR and PbBD of PbrR genetically engineered onto the surface of E. coli cells using Lpp-OmpA as the anchor. Followed by a 1.71-fold higher display of PbBD than PbrR, the presence of PbBD on the surface of E. coli cells enabled a 1.92-fold higher Pb2+ biosorption than that found in PbrR-displayed cells. Specific Pb2+ binding via PbBD was the same as Pb2+ binding via the full-length PbrR, with no observable decline even in the presence of Zn2+ and Cd2+. CONCLUSIONS: Since surface-engineered E. coli cells with PbBD increased the Pb2+ binding capacity and did not affect the adsorption selectivity, this suggests that surface display of the metal binding domain derived from MerR-like proteins may be used for the bioremediation of specific toxic heavy metals.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Chumbo/química , Fatores de Transcrição/genética , Adsorção , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Biodegradação Ambiental , Escherichia coli/química , Escherichia coli/genética , Engenharia Genética , Fatores de Transcrição/química
19.
BMC Genomics ; 18(1): 715, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893188

RESUMO

BACKGROUND: The current chassis organisms or various types of cell factories have considerable advantages and disadvantages. Therefore, it is necessary to develop various chassis for an efficient production of different bioproducts from renewable resources. In this context, synthetic biology offers unique potentialities to produce value-added products of interests. Microbial genome reduction and modification are important strategies for constructing cellular chassis and cell factories. Many genome-reduced strains from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum and Streptomyces, have been widely used for the production of amino acids, organic acids, and some enzymes. Some Pseudomonas strains could serve as good candidates for ideal chassis cells since they grow fast and can produce many valuable metabolites with low nutritional requirements and strong environmental adaptability. Pseudomonas chlororaphis GP72 is a non-pathogenic plant growth-promoting rhizobacterium that possesses capacities of tolerating various environmental stresses and synthesizing many kinds of bioactive compounds with high yield. These include phenazine-1-carboxylic acid (PCA) and 2-hydroxyphenazine (2-OH-PHZ), which exhibit strong bacteriostatic and antifungal activity toward some microbial pathogens. RESULTS: We depleted 685 kb (10.3% of the genomic sequence) from the chromosome of P. chlororaphis GP72(rpeA-) by a markerless deletion method, which included five secondary metabolic gene clusters and 17 strain-specific regions (525 non-essential genes). Then we characterized the 22 multiple-deletion series (MDS) strains. Growth characteristics, production of phenazines and morphologies were changed greatly in mutants with large-fragment deletions. Some of the genome-reduced P. chlororaphis mutants exhibited more productivity than the parental strain GP72(rpeA-). For example, strain MDS22 had 4.4 times higher production of 2-OH-PHZ (99.1 mg/L) than strain GP72(rpeA-), and the specific 2-OH-PHZ production rate (mmol/g/h) increased 11.5-fold. Also and MDS10 had the highest phenazine production (852.0 mg/L) among all the studied strains with a relatively high specific total phenazine production rate (0.0056 g/g/h). CONCLUSIONS: In conclusion, P. chlororaphis strains with reduced genome performed better in production of secondary metabolites than the parent strain. The newly developed mutants can be used for the further genetic manipulation to construct chassis cells with the less complex metabolic network, better regulation and more efficient productivity for diverse biotechnological applications.


Assuntos
Genômica , Pseudomonas chlororaphis/genética , Pseudomonas chlororaphis/metabolismo , Duplicação Gênica/genética , Fenótipo
20.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28188209

RESUMO

Phenazine-1-carboxylic acid, the main component of shenqinmycin, is widely used in southern China for the prevention of rice sheath blight. However, the fate of phenazine-1-carboxylic acid in soil remains uncertain. Sphingomonas wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources for growth. In this study, dioxygenase-encoding genes, pcaA1A2, were found using transcriptome analysis to be highly upregulated upon phenazine-1-carboxylic acid biodegradation. PcaA1 shares 68% amino acid sequence identity with the large oxygenase subunit of anthranilate 1,2-dioxygenase from Rhodococcus maanshanensis DSM 44675. The dioxygenase was coexpressed in Escherichia coli with its adjacent reductase-encoding gene, pcaA3, and ferredoxin-encoding gene, pcaA4, and showed phenazine-1-carboxylic acid consumption. The dioxygenase-, ferredoxin-, and reductase-encoding genes were expressed in Pseudomonas putida KT2440 or E. coli BL21, and the three recombinant proteins were purified. A phenazine-1-carboxylic acid conversion capability occurred in vitro only when all three components were present. However, P. putida KT2440 transformed with pcaA1A2 obtained phenazine-1-carboxylic acid degradation ability, suggesting that phenazine-1-carboxylic acid 1,2-dioxygenase has low specificities for its ferredoxin and reductase. This was verified by replacing PcaA3 with RedA2 in the in vitro enzyme assay. High-performance liquid chromatography-mass spectrometry (HPLC-MS) and nuclear magnetic resonance (NMR) analysis showed that phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation, indicating that PcaA1A2A3A4 constitutes the initial phenazine-1-carboxylic acid 1,2-dioxygenase. This study fills a gap in our understanding of the biodegradation of phenazine-1-carboxylic acid and illustrates a new dioxygenase for decarboxylation.IMPORTANCE Phenazine-1-carboxylic acid is widely used in southern China as a key fungicide to prevent rice sheath blight. However, the degradation characteristics of phenazine-1-carboxylic acid and the environmental consequences of the long-term application are not clear. S. wittichii DP58 can use phenazine-1-carboxylic acid as its sole carbon and nitrogen sources. In this study, a three-component dioxygenase, PcaA1A2A3A4, was determined to be the initial dioxygenase for phenazine-1-carboxylic acid degradation in S. wittichii DP58. Phenazine-1-carboxylic acid was converted to 1,2-dihydroxyphenazine through decarboxylation and hydroxylation. This finding may help us discover the pathway for phenazine-1-carboxylic acid degradation.


Assuntos
Dioxigenases/metabolismo , Proteínas Recombinantes/metabolismo , Sphingomonas/enzimologia , Dioxigenases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Fenazinas/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Homologia de Sequência de Aminoácidos , Sphingomonas/genética , Sphingomonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA