Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Respir J ; 59(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34625478

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease that is characterised by aberrant proliferation of activated myofibroblasts and pathological remodelling of the extracellular matrix. Previous studies have revealed that the intermediate filament protein nestin plays key roles in tissue regeneration and wound healing in different organs. Whether nestin plays a critical role in the pathogenesis of IPF needs to be clarified. METHODS: Nestin expression in lung tissues from bleomycin-treated mice and IPF patients was determined. Transfection with nestin short hairpin RNA vectors in vitro that regulated transcription growth factor (TGF)-ß/Smad signalling was conducted. Biotinylation assays to observe plasma membrane TßRI, TßRI endocytosis and TßRI recycling after nestin knockdown were performed. Adeno-associated virus serotype (AAV)6-mediated nestin knockdown was assessed in vivo. RESULTS: We found that nestin expression was increased in a murine pulmonary fibrosis model and IPF patients, and that the upregulated protein primarily localised in lung α-smooth muscle actin-positive myofibroblasts. Mechanistically, we determined that nestin knockdown inhibited TGF-ß signalling by suppressing recycling of TßRI to the cell surface and that Rab11 was required for the ability of nestin to promote TßRI recycling. In vivo, we found that intratracheal administration of AAV6-mediated nestin knockdown significantly alleviated pulmonary fibrosis in multiple experimental mice models. CONCLUSION: Our findings reveal a pro-fibrotic function of nestin partially through facilitating Rab11-dependent recycling of TßRI and shed new light on pulmonary fibrosis treatment.


Assuntos
Fibrose Pulmonar Idiopática , Fator de Crescimento Transformador beta , Animais , Bleomicina , Modelos Animais de Doenças , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Camundongos , Nestina/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo
2.
J Transl Med ; 20(1): 216, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562752

RESUMO

BACKGROUND: The 2019 coronavirus disease pandemic (COVID-19) poses an enormous threat to public health worldwide, and the ensuing management of social isolation has greatly decreased opportunities for physical activity (PA) and increased opportunities for leisure sedentary behaviors (LSB). Given that both PA and LSB have been established as major influencing factors for obesity, diabetes and cardiometabolic syndrome, whether PA/LSB in turn affects the susceptibility to COVID-19 by disrupting metabolic homeostasis remains to be explored. In this study, we aimed to systematically evaluate the causal relationship between PA/LSB and COVID-19 susceptibility, hospitalization and severity using a Mendelian randomization study. METHODS: Data were obtained from a large-scale PA dataset (N = 377,000), LSB dataset (N = 422,218) and COVID-19 Host Genetics Initiative (N = 2,586,691). The causal effects were estimated with inverse variance weighted, MR-Egger, weighted median and MR-PRESSO. Sensitivity analyses were implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis and the funnel plot. Risk factor analyses were further conducted to investigate the potential mediators. RESULTS: Genetically predicted accelerometer-assessed PA decreased the risk for COVID-19 hospitalization (OR = 0.93, 95% CI 0.88-0.97; P = 0.002), while leisure television watching significantly increased the risk of COVID-19 hospitalization (OR = 1.55, 95% CI 1.29-1.88; P = 4.68 × 10-6) and disease severity (OR = 1.85, 95% CI 1.33-2.56; P = 0.0002) after Bonferroni correction. No causal effects of self-reported moderate to vigorous physical activity (MVPA), accelerometer fraction of accelerations > 425 milligravities, computer use or driving on COVID-19 progression were observed. Risk factor analyses indicated that the above causal associations might be mediated by several metabolic risk factors, including smoking, high body mass index, elevated serum triglyceride levels, insulin resistance and the occurrence of type 2 diabetes. CONCLUSION: Our findings supported a causal effect of accelerometer-assessed PA on the reduced risk of COVID-19 hospitalization as well as television watching on the increased risk of COVID-19 hospitalization and severity, which was potentially mediated by smoking, obesity and type 2 diabetes-related phenotypes. Particular attention should be given to reducing leisure sedentary behaviors and encouraging proper exercise during isolation and quarantine for COVID-19.


Assuntos
COVID-19 , Diabetes Mellitus Tipo 2 , COVID-19/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Exercício Físico , Estudo de Associação Genômica Ampla , Humanos , Atividades de Lazer , Análise da Randomização Mendeliana , Obesidade , Comportamento Sedentário
3.
Behav Genet ; 50(3): 152-160, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32048109

RESUMO

Fragile X syndrome (FXS) is a heritable mental retardation disease caused by unstable trinucleotide repeat sequences in FMR1. FXS is characterized by delayed development, hyperactivity, and autism behavior. Zebrafish is an excellent model to study FXS and the underlying function of fmr1. However, at present, fmr1 function is mainly studied via morpholinos or generated mutants using targeting induced local lesions in genomes. However, both of these methods generate off-target effects, making them suboptimal techniques for studying FXS. In this study, CRISPR/Cas9 technology was used to generate two zebrafish fmr1 mutant lines. High-throughput behavior analysis, qRT-PCR, and alcian blue staining experiments were employed to investigate fmr1 function. The fmr1 mutant line showed abnormal behavior, learning memory defects, and impaired craniofacial cartilage development. These features are similar to the human FXS phenotype, indicating that the fmr1 mutant generated in this study can be used as a new model for studying the molecular pathology of FXS. It also provides a suitable model for high-throughput screening of small molecule drugs for FXS therapeutics.


Assuntos
Anormalidades Craniofaciais/genética , Síndrome do Cromossomo X Frágil/genética , Hipercinese/genética , Transtornos da Memória/genética , Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Animais , Desenvolvimento Ósseo/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Modelos Animais de Doenças , Feminino , Síndrome do Cromossomo X Frágil/fisiopatologia , Larva/genética , Masculino , Mutação , Proteínas de Ligação a RNA/fisiologia , Peixe-Zebra , Proteínas de Peixe-Zebra/fisiologia
4.
Acta Pharmacol Sin ; 41(6): 753-762, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31949293

RESUMO

Thromboembolic disease is a common cardio-cerebral vascular disease that threatens human life and health. Thrombin not only affects the exogenous coagulation pathway, but also the endogenous pathway. Thus, it becomes one of the most important targets of anticoagulant drugs. RGD-hirudin is an anticoagulant drug targeting thrombin, but it can only be administered intravenously. We designed a low molecular weight peptide based on RGD-hirudin that could prevent blood clots. We first used NMR to identify the key amino acid residues of RGD-hirudin that interacted with thrombin. Then, we designed a novel direct thrombin inhibitor peptide (DTIP) based on the structure and function of RGD-hirudin using homology modeling. Molecular docking showed that the targeting and binding of DTIP with thrombin were similar to those of RGD-hirudin, suggesting DTIP interacted directly with thrombin. The active amino acids of DTIP were identified by alanine scanning, and mutants were successfully constructed. In blood clotting time tests in vitro, we found that aPTT, PT, and TT in the rat plasma added with DTIP were greatly prolonged than in that added with the mutants. Subcutaneous injection of DTIP in rats also could significantly prolong the clotting time. Thrombelastography analysis revealed that DTIP significantly delayed blood coagulation. Bio-layer interferometry study showed that there were no significant differences between DTIP and the mutants in thrombin affinity constants, suggesting that it might bind to other sites of thrombin rather than to its active center. Our results demonstrate that DTIP with low molecular weight can prevent thrombosis via subcutaneous injection.


Assuntos
Anticoagulantes/farmacologia , Hirudinas/farmacologia , Animais , Anticoagulantes/administração & dosagem , Coagulação Sanguínea/efeitos dos fármacos , Hirudinas/administração & dosagem , Injeções Subcutâneas , Masculino , Simulação de Acoplamento Molecular , Peso Molecular , Ratos , Ratos Sprague-Dawley
5.
Stem Cells ; 36(4): 589-601, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29314417

RESUMO

Neural stem/progenitor cells (NSPCs) transplantation provides an alternative approach for various central nervous system (CNS) diseases treatment, while the difficulties in NSPC acquisition and expansion limit their further application. Unveiling the mechanism of NSPC stemness regulation may contribute to its further application. Nestin, generally recognized as a marker of NSPCs, plays a crucial role in the CNS development and NSPC stemness maintenance. Here, we report that Nestin loss triggers mitochondrial network remodeling and enhances oxidative phosphorylation (OXPHOS) in NSPCs treated with Nestin RNA interference (RNAi). Mitochondrial morphology is dynamically controlled by the balance between fission and fusion mediators; one of these mediators, the pro-fission factor, dynamin-related protein 1 (Drp1), shows decreased activation in Nestin-knockdown cells. Upstream, Drp1 phosphorylation is under control of the cytosolic cyclin-dependent kinase 5 (Cdk5). Inhibition of Cdk5 using RNAi or a chemical inhibitor (roscovitine) induces mitochondrial elongation and promotes mitochondrial respiration, indicating that Cdk5-dependent Drp1 phosphorylation participates in mitochondrial metabolism and NSPC stemness regulation. Strikingly, Nestin knockdown results in Cdk5 redistribution, with less remaining in the cytosol, leading to mitochondrial remodeling. We identify Nestin1-640 sequesters Cdk5 in the cytosol and phosphorylates Drp1 subsequently. Together, our results show that a Nestin-Cdk5-Drp1 axis negatively regulates mitochondrial OXPHOS, which is indispensable for the maintenance of NSPC stemness. Stem Cells 2018;36:589-601.


Assuntos
Quinase 5 Dependente de Ciclina/metabolismo , Dinaminas/metabolismo , Mitocôndrias/metabolismo , Nestina/metabolismo , Células-Tronco Neurais/metabolismo , Transdução de Sinais/fisiologia , Animais , Camundongos , Células-Tronco Neurais/citologia , Fosforilação Oxidativa
6.
Neuroimmunomodulation ; 25(1): 1-6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29788018

RESUMO

BACKGROUND: Autoimmune glial fibrillary acidic protein (GFAP) astrocytopathy is a novel meningoencephalomyelitis. However, the pathogenesis of this disease is unclear. We therefore examined a brain biopsy from a patient with autoimmune GFAP astrocytopathy by immunohistopathology. METHODS: We examined brain biopsy sections from a patient with autoimmune GFAP astrocytopathy using hematoxylin and eosin (HE) and Luxol fast blue (LFB) staining, and immunostaining with antibodies for CD4, CD8, CD3, CD20, CD68, CD138, Neu-N, GFAP, myelin oligodendrocyte glycoprotein (MOG), and aquaporin-4 (AQP4). RESULTS: HE staining revealed extensive inflammatory cells (marked lymphocytes) around brain vessels, and LFB showed no signs of demyelination or axon loss. Immunohistochemical analysis showed CD3+ and CD4+ T cells cuffing around brain vessels, accompanied by CD8+ T cells, CD20+ B cells, and CD138+ plasma cells, while some macrophages (CD68+) were scattered throughout the brain parenchyma. There was no loss of AQP4 or MOG expression in this patient, while GFAP was abundantly expressed. CONCLUSIONS: These findings suggest that inflammatory cells, including T cells, B cells, plasma cells, and macrophages, are involved in autoimmune GFAP astrocytopathy. Demyelination and astrocyte loss may not necessarily occur in this disease.


Assuntos
Astrócitos/imunologia , Encéfalo/diagnóstico por imagem , Encéfalo/imunologia , Proteína Glial Fibrilar Ácida/imunologia , Meningoencefalite/diagnóstico por imagem , Meningoencefalite/imunologia , Animais , Astrócitos/patologia , Feminino , Células HEK293 , Humanos , Pessoa de Meia-Idade , Ratos
7.
BMC Struct Biol ; 14: 26, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25526801

RESUMO

BACKGROUND: Hirudin is an anti-coagulation protein produced by the salivary glands of the medicinal leech Hirudomedicinalis. It is a powerful and specific thrombin inhibitor. The novel recombinant hirudin, RGD-hirudin, which contains an RGD motif, competitively inhibits the binding of fibrinogen to GPIIb/IIIa on platelets, thus inhibiting platelet aggregation while maintaining its anticoagulant activity. RESULTS: Recombinant RGD-hirudin and six mutant variants (Y3A, S50A, Q53A, D55A, E57A and I59A), designed based on molecular simulations, were expressed in Pichia pastoris. The proteins were refolded and purified to homogeneity as monomers by gel filtration and anion exchange chromatography. The anti-thrombin activity of the six mutants and RGD-hirudin was tested. Further, we evaluated the binding of the mutant variants and RGD-hirudin to thrombin using BIAcore surface plasmon resonance analysis (SPR). Kinetics and affinity constants showed that the KD values of all six mutant proteins were higher than that of RGD-hirudin. CONCLUSIONS: These findings contribute to a novel understanding of the interaction between RGD-hirudin and thrombin.


Assuntos
Hirudinas/química , Hirudinas/genética , Pichia/genética , Trombina/antagonistas & inibidores , Tirosina/genética , Sítios de Ligação , Domínio Catalítico , Hirudinas/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Pichia/metabolismo , Mutação Puntual , Redobramento de Proteína , Ressonância de Plasmônio de Superfície , Trombina/metabolismo
8.
iScience ; 27(6): 109953, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38947510

RESUMO

The development of targeted drugs for the early prevention and management of chronic kidney disease (CKD) is of great importance. However, the success rates and cost-effectiveness of traditional drug development approaches are extremely low. Utilizing large sample genome-wide association study data for drug repurposing has shown promise in many diseases but has not yet been explored in CKD. Herein, we investigated actionable druggable targets to improve renal function using large-scale Mendelian randomization and colocalization analyses. We combined two population-scale independent genetic datasets and validated findings with cell-type-dependent eQTL data of kidney tubular and glomerular samples. We ultimately prioritized two drug targets, opioid receptor-like 1 and F12, with potential genetic support for restoring renal function and subsequent treatment of CKD. Our findings explore the potential pathological mechanisms of CKD, bridge the gap between the molecular mechanisms of pathogenesis and clinical intervention, and provide new strategies in future clinical trials of CKD.

9.
Adv Sci (Weinh) ; 11(25): e2400426, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38666466

RESUMO

Adaptive metabolic responses and innate metabolites hold promising therapeutic potential for stroke, while targeted interventions require a thorough understanding of underlying mechanisms. Adiposity is a noted modifiable metabolic risk factor for stroke, and recent research suggests that it benefits neurological rehabilitation. During the early phase of experimental stroke, the lipidomic results showed that fat depots underwent pronounced lipolysis and released fatty acids (FAs) that feed into consequent hepatic FA oxidation and ketogenesis. Systemic supplementation with the predominant ketone beta-hydroxybutyrate (BHB) is found to exert discernible effects on preserving blood-brain barrier (BBB) integrity and facilitating neuroinflammation resolution. Meanwhile, blocking FAO-ketogenesis processes by administration of CPT1α antagonist or shRNA targeting HMGCS2 exacerbated endothelial damage and aggravated stroke severity, whereas BHB supplementation blunted these injuries. Mechanistically, it is unveiled that BHB infusion is taken up by monocarboxylic acid transporter 1 (MCT1) specifically expressed in cerebral endothelium and upregulated the expression of tight junction protein ZO-1 by enhancing local ß-hydroxybutyrylation of H3K9 at the promoter of TJP1 gene. Conclusively, an adaptive metabolic mechanism is elucidated by which acute lipolysis stimulates FAO-ketogenesis processes to restore BBB integrity after stroke. Ketogenesis functions as an early metabolic responder to restrain stroke progression, providing novel prospectives for clinical translation.


Assuntos
Ácido 3-Hidroxibutírico , Barreira Hematoencefálica , Modelos Animais de Doenças , AVC Isquêmico , Proteína da Zônula de Oclusão-1 , Animais , Barreira Hematoencefálica/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Ácido 3-Hidroxibutírico/farmacologia , Camundongos , AVC Isquêmico/metabolismo , AVC Isquêmico/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteína da Zônula de Oclusão-1/genética , Epigênese Genética/genética , Masculino , Camundongos Endogâmicos C57BL , Hidroximetilglutaril-CoA Sintase , Transportadores de Ácidos Monocarboxílicos , Simportadores
10.
Front Immunol ; 14: 1343428, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274829

RESUMO

Background: Cell fate and microenvironmental changes resulting from aberrant expression of specific proteins in tumors are one of the major causes of inadequate anti-tumor immune response and poor prognosis in head and neck cancer (HNC). Eukaryotic initiation factor 3C (eIF3c) has emerged as a promising therapeutic target for HNC due to its ability to regulate protein expression levels in tumor cells, but its drug development is difficult to achieve by targeting traditional protein-protein interactions. siRNA has emerged as a highly promising modality for drug development targeting eIF3c, while its application is hindered by challenges pertaining to inadequate stability and insufficient concentration specifically within tumor sites. Method: We employed a method to convert flexible siRNAs into stable and biologically active infinite Auric-sulfhydryl coordination supramolecular siRNAs (IacsRNAs). Through coordinated self-assembly, we successfully transformed eIF3C siRNAs into the carrier-free HNC nanotherapeutic agent Iacs-eif3c-RNA. The efficacy of this agent was evaluated in vivo using HNC xenograft models, demonstrating promising antitumor effects. Results: Iacs-eif3c-RNA demonstrated the ability to overcome the pharmacological obstacle associated with targeting eIF3C, resulting in a significant reduction in eIF3C expression within tumor tissues, as well as effective tumor cell proliferating suppression and apoptosis promotion. In comparison to monotherapy utilizing the chemotherapeutic agent cisplatin, Iacs-eif3c-RNA exhibited superior anti-tumor efficacy and favorable biosafety. Conclusion: The utilization of Iacs-eif3c-RNA as a carrier-free nanotherapeutic agent presents a promising and innovative approach for addressing HNC treating challenges. Moreover, this strategy demonstrates potential for the translation of therapeutic siRNAs into clinical drugs, extending its applicability to the treatment of other cancers and various diseases.


Assuntos
Neoplasias de Cabeça e Pescoço , Ácidos Nucleicos , Humanos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Cisplatino , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Expressão Gênica
11.
Theranostics ; 13(10): 3371-3386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37351175

RESUMO

Objective: The low clinical utility of immune checkpoint inhibitors (ICIs) against PD-1 or PD-L1 has recently been associated with the activation of the Wnt/ß-catenin signaling pathway in hepatocellular carcinoma (HCC), which promotes tumor immune escape and resistance to anti-PD-1/PD-L1 therapy. Hence, we aimed to fabricate a supramolecular peptide which could target the Wnt/ß-catenin signaling pathway coupled with ICIs blockage therapy for optimizing HCC immunotherapy. Methods: A racemic spherical supramolecular peptide termed sBBI&PDP nanoparticle was constructed by hierarchical self-assembly, comprising an L-enantiomeric peptide as an inhibitor of BCL9 and ß-catenin (sBBI) and a D-enantiomeric peptide as an inhibitor of PD-1/PD-L1 (PDP). Results: sBBI&PDP nanoparticle potently suppressed the hyperactivated Wnt/ß-catenin signaling pathway in vitro and in vivo, while blocking endogenous PD-L1 effectively. Furthermore, sBBI&PDP increased the infiltration and action of CD8+ T cells at tumor sites. Notably, compared with the original sBBI and commercial Anti-PD-L1 inhibitors, the designed sBBI&PDP showed stronger antitumor efficacy in an orthotopic homograft mice model of HCC and a PDX HCC model in Hu-PBMC-NSG mice. Moreover, sBBI&PDP possessed a favorable biosafety profile. Conclusion: The successful implementation of this strategy could revitalize ICIs blockage therapy and promote the discovery of artificial peptides for HCC immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Linfócitos T CD8-Positivos , beta Catenina/metabolismo , Leucócitos Mononucleares/metabolismo , Imunoterapia , Peptídeos/metabolismo , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral
12.
Front Immunol ; 14: 1265914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37876940

RESUMO

Introduction: Hypoxia is associated with unfavorable prognoses in melanoma patients, and the limited response rates of patients to PD-1/PD-L1 blockade could be attributed to the immunosuppressive tumor microenvironment induced by hypoxia. Exercise offers numerous benefits in the anti-tumor process and has the potential to alleviate hypoxia; however, the precise mechanisms through which it exerts its anti-tumor effects remain unclear, and the presence of synergistic effects with PD-1/PD-L1 immunotherapy is yet to be definitively established. Methods: We established a B16F10 homograft malignant melanoma model and implemented two distinct exercise treatments (low/moderate-intensity swim) based on the mice's exercise status. The specific function manner of exercise-induced anti-tumor effects was determined through RNA sequencing and analysis of changes in the tumor microenvironment. Furthermore, moderate-intensity swim that exhibited superior tumor suppression effects was combined with Anti-PD-1 treatment to evaluate its in vivo efficacy in mouse models. Results: Exercise intervention yielded a considerable effect in impeding tumor growth and promoting apoptosis. Immunohistochemistry and RNA sequencing revealed improvements in tumor hypoxia and down-regulation of hypoxia-related pathways. Cellular immunofluorescence and ELISA analyses demonstrated a notable increase of cytotoxic T cell amount and a decrease of regulatory T cells, indicating an improvement of tumor immune microenvironment. In comparison to Anti-PD-1 monotherapy, tumor suppressive efficacy of exercise combination therapy was found to be enhanced with improvements in both the hypoxic tumor microenvironment and T cell infiltration. Conclusion: Exercise has the potential to function as a hypoxia modulator improving the tumor immune microenvironment, resulting in the promotion of anti-tumor efficacy and the facilitation of biologically safe sensitization of PD-1/PD-L1 immunotherapy.


Assuntos
Melanoma , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Hipóxia , Imunoterapia/métodos , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral , Condicionamento Físico Animal
13.
Front Immunol ; 14: 1253833, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901228

RESUMO

Objective: Sepsis related injury has gradually become the main cause of death in non-cardiac patients in intensive care units, but the underlying pathological and physiological mechanisms remain unclear. The Third International Consensus Definitions for Sepsis and Septic Shock (SEPSIS-3) definition emphasized organ dysfunction caused by infection. Neutrophil extracellular traps (NETs) can cause inflammation and have key roles in sepsis organ failure; however, the role of NETs-related genes in sepsis is unknown. Here, we sought to identify key NETs-related genes associate with sepsis. Methods: Datasets GSE65682 and GSE145227, including data from 770 patients with sepsis and 54 healthy controls, were downloaded from the GEO database and split into training and validation sets. Differentially expressed genes (DEGs) were identified and weighted gene co-expression network analysis (WGCNA) performed. A machine learning approach was applied to identify key genes, which were used to construct functional networks. Key genes associated with diagnosis and survival of sepsis were screened out. Finally, mouse and human blood samples were collected for RT-qPCR verification and flow cytometry analysis. Multiple organs injury, apoptosis and NETs expression were measured to evaluated effects of sulforaphane (SFN). Results: Analysis of the obtained DEGs and WGCNA screened a total of 3396 genes in 3 modules, and intersection of the results of both analyses with 69 NETs-related genes, screened out seven genes (S100A12, SLC22A4, FCAR, CYBB, PADI4, DNASE1, MMP9) using machine learning algorithms. Of these, CYBB and FCAR were independent predictors of poor survival in patients with sepsis. Administration of SFN significantly alleviated murine lung NETs expression and injury, accompanied by whole blood CYBB mRNA level. Conclusion: CYBB and FCAR may be reliable biomarkers of survival in patients with sepsis, as well as potential targets for sepsis treatment. SFN significantly alleviated NETs-related organs injury, suggesting the therapeutic potential by targeting CYBB in the future.


Assuntos
Armadilhas Extracelulares , Sepse , Choque Séptico , Humanos , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Sepse/diagnóstico , Sepse/tratamento farmacológico , Sepse/genética , Choque Séptico/genética , Biomarcadores , Perfilação da Expressão Gênica , NADPH Oxidase 2/genética
14.
Colloids Surf B Biointerfaces ; 217: 112649, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35753193

RESUMO

By integrating the fluorescence of quantum dots (QDs) and Mn2+-pefloxacin mesylate (Mn2+-pefloxacin), a new type of dual-band fluorescence biosensor for high-efficiency and sensitive determination of double-stranded DNA (dsDNA) is developed. The biosensor is based on the fluorescence "OFF-ON" mode of both QDs and QDs-Mn2+-pefloxacin. The Mn2+-pefloxacin complex can quench the QDs fluorescence via photoinduced electron transfer (PET), and its fluorescence is also quenched. Due to the specificity and strong binding affinity of dsDNA for the Mn2+-pefloxacin complex, it can break the low fluorescent QDs-Mn2+-pefloxacin and restore the fluorescence of QDs and Mn2+-pefloxacin complex in their respective bands. Therefore, the dual-band fluorescence quantitative detection of dsDNA by QDs-Mn2+-pefloxacin can be achieved, while bovine serum albumin, single-stranded DNA, and bio-related ions do not yield similar results. Furthermore, the possible reaction mechanisms are systematically discussed. The detection limits (3δ/K) of herring sperm (hs) DNA in the fluorescence recovery bands of QDs and Mn2+-pefloxacin complex are 0.0142 and 0.0465 µg/mL, respectively. The developed biosensor was used for dsDNA detection in synthetic samples, and desirable results are obtained.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Técnicas Biossensoriais/métodos , DNA , Fluorescência , Humanos , Masculino , Pefloxacina , Sêmen , Espectrometria de Fluorescência/métodos
16.
Front Bioeng Biotechnol ; 10: 1087363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578506

RESUMO

A major sign of aging is wrinkles (dynamic lines and static lines) on the surface of the skin. In spite of Botulinum toxin's favorable therapeutic effect today, there have been several reports of its toxicity and side effects. Therefore, the development of an effective and safe wrinkle-fighting compound is imperative. An antioxidant-wrinkle effect was demonstrated by the peptide that we developed and synthesized, termed Skin Peptide. Aiming at the intrinsic defects of the peptide such as hydrolysis and poor membrane penetration, we developed a general approach to transform the Skin Peptide targeting intracellular protein-protein interaction into a bioavailable peptide-gold spherical nano-hybrid, Skin Pcluster. As expected, the results revealed that Skin Pcluster reduced the content of acetylcholine released by neurons in vitro, and then inhibit neuromuscular signal transmission. Additionally, human experiments demonstrated a significant de-wrinkle effect. Moreover, Skin Pcluster is characterized by a reliable safety profile. Consequently, anti-wrinkle peptides and Skin Pcluster nanohybrids demonstrated innovative anti-wrinkle treatments and have significant potential applications.

17.
Nat Commun ; 13(1): 4020, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35821241

RESUMO

Male reproductive system ageing is closely associated with deficiency in testosterone production due to loss of functional Leydig cells, which are differentiated from stem Leydig cells (SLCs). However, the relationship between SLC differentiation and ageing remains unknown. In addition, active lipid metabolism during SLC differentiation in the reproductive system requires transportation and processing of substrates among multiple organelles, e.g., mitochondria and endoplasmic reticulum (ER), highlighting the importance of interorganelle contact. Here, we show that SLC differentiation potential declines with disordered intracellular homeostasis during SLC senescence. Mechanistically, loss of the intermediate filament Nestin results in lower differentiation capacity by separating mitochondria-ER contacts (MERCs) during SLC senescence. Furthermore, pharmacological intervention by melatonin restores Nestin-dependent MERCs, reverses SLC differentiation capacity and alleviates male reproductive system ageing. These findings not only explain SLC senescence from a cytoskeleton-dependent MERCs regulation mechanism, but also suggest a promising therapy targeting SLC differentiation for age-related reproductive system diseases.


Assuntos
Retículo Endoplasmático , Células Intersticiais do Testículo , Mitocôndrias , Envelhecimento/metabolismo , Diferenciação Celular/fisiologia , Retículo Endoplasmático/metabolismo , Humanos , Células Intersticiais do Testículo/citologia , Células Intersticiais do Testículo/metabolismo , Masculino , Mitocôndrias/metabolismo , Nestina/metabolismo
18.
Stem Cell Res Ther ; 12(1): 65, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33461597

RESUMO

BACKGROUND: Cancer cachexia is a wasting syndrome that is quite common in terminal-stage cancer patients. Cancer-related anemia is one of the main features of cancer cachexia and mostly results in a poor prognosis. The disadvantages of the current therapies are obvious, but few new treatments have been developed because the pathological mechanism remains unclear. METHODS: C57BL/6 mice were subcutaneously injected with Lewis lung carcinoma cells to generate a cancer-related anemia model. The treated group received daily intraperitoneal injections of SB505124. Blood parameters were determined with a routine blood counting analyzer. Erythroid cells and hematopoietic stem/progenitor cells were analyzed by flow cytometry. The microarchitecture changes of the femurs were determined by micro-computed tomography scans. Smad2/3 phosphorylation was analyzed by immunofluorescence and Western blotting. The changes in the hematopoietic stem cell niche were revealed by qPCR analysis of both fibrosis-related genes and hematopoietic genes, fibroblastic colony-forming unit assays, and lineage differentiation of mesenchymal stromal cells. RESULTS: The mouse model exhibited hematopoietic suppression, marked by a decrease of erythrocytes in the peripheral blood, as well as an increase of immature erythroblasts and reduced differentiation of multipotent progenitors in the bone marrow. The ratio of bone volume/total volume, trabecular number, and cortical wall thickness all appeared to decrease, and the increased osteoclast number has led to the release of latent TGFß and TGFß signaling over-activation. Excessive TGFß deteriorated the hematopoietic stem cell niche, inducing fibrosis of the bone marrow as well as the transition of mesenchymal stromal cells. Treatment with SB505124, a small-molecule inhibitor of TGFß signaling, significantly attenuated the symptoms of cancer-related anemia in this model, as evidenced by the increase of erythrocytes in the peripheral blood and the normalized proportion of erythroblast cell clusters. Meanwhile, hindered hematopoiesis and deteriorated hematopoietic stem cell niche were also shown to be restored with SB505124 treatment. CONCLUSION: This study investigated the role of TGFß released by bone remodeling in the progression of cancer-related anemia and revealed a potential therapeutic approach for relieving defects in hematopoiesis.


Assuntos
Anemia , Neoplasias , Anemia/tratamento farmacológico , Animais , Diferenciação Celular , Hematopoese , Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Nicho de Células-Tronco , Fator de Crescimento Transformador beta/genética , Microtomografia por Raio-X
19.
Sci Adv ; 7(4)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523954

RESUMO

The intestinal microbiota shape the host immune system and influence the outcomes of various neurological disorders. Arteriosclerotic cerebral small vessel disease (aCSVD) is highly prevalent among the elderly with its pathological mechanisms yet is incompletely understood. The current study investigated the ecology of gut microbiota in patients with aCSVD, particularly its impact on the host immune system. We reported that the altered composition of gut microbiota was associated with undesirable disease outcomes and exacerbated inflammaging status. When exposed to the fecal bacterial extracts from a patient with aCSVD, human and mouse neutrophils were activated, and capacity of interleukin-17A (IL-17A) production was increased. Mechanistically, RORγt signaling in neutrophils was activated by aCSVD-associated gut bacterial extracts to up-regulate IL-17A production. Our findings revealed a previously unrecognized implication of the gut-immune-brain axis in aCSVD pathophysiology, with therapeutic implications.


Assuntos
Microbioma Gastrointestinal , Idoso , Animais , Microbioma Gastrointestinal/fisiologia , Humanos , Interleucina-17 , Camundongos , Neutrófilos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Extratos Vegetais
20.
Artigo em Inglês | MEDLINE | ID: mdl-32339758

RESUMO

Cadmium is a common heavy metal pollutant. Previous studies have found that long-term cadmium exposure can cause damage to multiple organs/systems in humans and experimental animals; however, there are few studies that elucidate its effects on offspring development, discuss whether it can be transmitted to offspring from the parent, and debate whether it affects the functional development of the thyroid hormone system in offsprings. In this study, sexually mature zebrafish were exposed to different concentrations of cadmium chloride (0.01 µmol/L, 0.1 µmol/L, and 1 µmol/L) to study reproductive toxicity. It was found that parental zebrafish exposed to 1 µmol/L of cadmium chloride produced offsprings with different degrees of malformation. At 5 days post-fertilization (dpf), the levels of 3,5,3'-triiododenosine (T3) and thyroxine (T4) in the zebrafish were decreased. At 10 dpf, the T4 and T3 levels in the zebrafish of the offspring were significantly reduced. At the same time, the expression of thyroid receptor (trα and trß) genes in five dpf larvae was significantly up-regulated in the 1 µmol/L treatment group relative to the control group. The mRNAs of thyroid hormone synthesis and metabolism-related genes (tshß, dio1, dio2, ugt1ab, and ttr) were significantly up-regulated in the 0.1 µmol/L and 1 µmol/L treatment groups. This study demonstrates that parental cadmium chloride exposure produces reproductive toxicity in zebrafish and that the effects can be transferred from the parent to the offspring, resulting in developmental toxicity in the thyroid endocrine system.


Assuntos
Cloreto de Cádmio/toxicidade , Disruptores Endócrinos/toxicidade , Exposição Materna/efeitos adversos , Exposição Paterna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Glândula Tireoide/efeitos dos fármacos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Feminino , Fertilidade/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Taxa de Sobrevida , Glândula Tireoide/patologia , Hormônios Tireóideos/metabolismo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA