Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neurooncol ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900237

RESUMO

PURPOSE: Mesenchymal stromal cells (MSCs) within the glioblastoma microenvironment have been shown to promote tumor progression. Tumor Treating Fields (TTFields) are alternating electric fields with low intensity and intermediate frequency that exhibit anti-tumorigenic effects. While the effects of TTFields on glioblastoma cells have been studied previously, nothing is known about the influence of TTFields on MSCs. METHODS: Single-cell RNA sequencing and immunofluorescence staining were employed to identify glioblastoma-associated MSCs in patient samples. Proliferation and clonogenic survival of human bone marrow-derived MSCs were assessed after TTFields in vitro. MSC' characteristic surface marker expression was determined using flow cytometry, while multi-lineage differentiation potential was examined with immunohistochemistry. Apoptosis was quantified based on caspase-3 and annexin-V/7-AAD levels in flow cytometry, and senescence was assessed with ß-galactosidase staining. MSCs' migratory potential was evaluated with Boyden chamber assays. RESULTS: Single-cell RNA sequencing and immunofluorescence showed the presence of glioblastoma-associated MSCs in patient samples. TTFields significantly reduced proliferation and clonogenic survival of human bone marrow-derived MSCs by up to 60% and 90%, respectively. While the characteristic surface marker expression and differentiation capacity were intact after TTFields, treatment resulted in increased apoptosis and senescence. Furthermore, TTFields significantly reduced MSCs' migratory capacity. CONCLUSION: We could demonstrate the presence of tumor-associated MSCs in glioblastoma patients, providing a rationale to study the impact of TTFields on MSCs. TTFields considerably increase apoptosis and senescence in MSCs, resulting in impaired survival and migration. The results provide a basis for further analyses on the role of MSCs in glioblastoma patients receiving TTFields.

2.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887032

RESUMO

Radiotherapy of head-and-neck squamous cell carcinoma (HNSCC) can cause considerable normal tissue injuries, and mesenchymal stromal cells (MSCs) have been shown to aid regeneration of irradiation-damaged normal tissues. However, utilization of MSC-based treatments for HNSCC patients undergoing radiotherapy is hampered by concerns regarding potential radioprotective effects. We therefore investigated the influence of MSCs on the radiosensitivity of HNSCCs. Several human papillomavirus (HPV)-negative and HPV-positive HNSCCs were co-cultured with human bone marrow-derived MSCs using two-dimensional and three-dimensional assays. Clonogenic survival, proliferation, and viability of HNSCCs after radiotherapy were assessed depending on MSC co-culture. Flow cytometry analyses were conducted to examine the influence of MSCs on irradiation-induced cell cycle distribution and apoptosis induction in HNSCCs. Immunofluorescence stainings of γH2AX were conducted to determine the levels of residual irradiation-induced DNA double-strand breaks. Levels of connective tissue growth factor (CTGF), a multifunctional pro-tumorigenic cytokine, were analyzed using enzyme-linked immunosorbent assays. Neither direct MSC co-culture nor MSC-conditioned medium exerted radioprotective effects on HNSCCs as determined by clonogenic survival, proliferation, and viability assays. Consistently, three-dimensional microwell arrays revealed no radioprotective effects of MSCs. Irradiation resulted in a G2/M arrest of HNSCCs at 96 h independently of MSC co-culture. HNSCCs' apoptosis rates were increased by irradiation irrespective of MSCs. Numbers of residual γH2AX foci after irradiation with 2 or 8 Gy were comparable between mono- and co-cultures. MSC mono-cultures and HNSCC-MSC co-cultures exhibited comparable CTGF levels. We did not detect radioprotective effects of human MSCs on HNSCCs. Our results suggest that the usage of MSC-based therapies for radiotherapy-related toxicities in HNSCC patients may be safe in the context of absent radioprotection.


Assuntos
Neoplasias de Cabeça e Pescoço , Células-Tronco Mesenquimais , Infecções por Papillomavirus , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
3.
Strahlenther Onkol ; 197(10): 895-902, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34342662

RESUMO

PURPOSE: Painful osteoarthritis is common in elderly patients, and low-dose radiotherapy has been demonstrated to provide effective symptomatic treatment. We examined the analgesic effects of low-dose radiotherapy for osteoarthritis in the elderly aiming to reveal potential differences in the response rates relating to increasing age. METHODS: A retrospective analysis was performed at two university hospitals including elderly patients (≥ 65 years) undergoing radiotherapy for osteoarthritis between 2008 and 2020. Pain intensity and response were quantified using the numerical rating scale (NRS) and the Pannewitz score. Age groups were defined for young old (65-74 years), older old (75-84 years), and oldest old patients (≥ 85 years). RESULTS: In all, 970 patients with 1185 treated sites and a median age of 76 years were analyzed. Mean NRS was 66 at baseline (t0), 53 after radiotherapy (t1), and 44 at first follow-up (t2) (p < 0.001 for t0-t1, t1-t2, and t0-t2). At t1, 1.5% exhibited a Pannewitz score of 0 (no pain), 58.5% of 1-2 (less pain), 36.1% of 3 (equal pain), and 3.9% of 4 (worse pain), while at t2, pain response shifted towards 6.9% (0), 58.6% (1-2), 28.1% (3), and 6.3% (4). Pain response did not differ between age groups at t1 (p = 0.172) or t2 (p = 0.684). In addition, pain response after re-irradiation (n = 384 sites) was 61.0% and was comparable between age groups (p = 0.535). CONCLUSION: Low-dose radiotherapy results in pain reduction in about two-thirds of treated sites with no difference relating to increasing age, showing that radiotherapy is an effective analgesic treatment for osteoarthritis even at advanced ages.


Assuntos
Osteoartrite , Idoso , Idoso de 80 Anos ou mais , Seguimentos , Humanos , Osteoartrite/radioterapia , Dor , Medição da Dor , Estudos Retrospectivos , Resultado do Tratamento
4.
Nature ; 528(7580): 93-8, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26536111

RESUMO

Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.


Assuntos
Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Junções Comunicantes/metabolismo , Animais , Astrocitoma/metabolismo , Astrocitoma/radioterapia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Comunicação Celular/efeitos da radiação , Morte Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Conexina 43/metabolismo , Progressão da Doença , Proteína GAP-43/metabolismo , Junções Comunicantes/efeitos da radiação , Glioma/metabolismo , Glioma/patologia , Glioma/radioterapia , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Tolerância a Radiação/efeitos dos fármacos
5.
Int J Cancer ; 147(4): 1059-1070, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31782150

RESUMO

Progress in the systemic control of osteosarcoma has been limited over the past decades thus indicating the urgent clinical need for the development of novel treatment strategies. Therefore, we have recently developed new preclinical models to study promising novel agents for the treatment of pediatric osteosarcoma. The checkpoint kinase (chk) inhibitor prexasertib (LY2606368) and its salt form (LSN2940930) have recently been shown to be active in adult and pediatric malignancies, including sarcoma. We have now tested the potency of prexasertib in clonogenic survival assays in two new lines of primary patient-derived osteosarcoma cells and in two established osteosarcoma cell lines as a single agent and in combination with cisplatin and the poly ADP-ribose polymerase (PARP) inhibitor talazoparib. Prexasertib alone results in strongly reduced clonogenic survival at low nanomolar concentrations and acts by affecting cell cycle progression, induction of apoptosis and induction of double-stranded DNA breakage at concentrations that are well below clinically tolerable and safe plasma concentrations. In combination with cisplatin and talazoparib, prexasertib acts in a synergistic fashion. Chk1 inhibition by prexasertib and its combination with the DNA damaging agent cisplatin and the PARP-inhibitor talazoparib thus emerges as a potential new treatment option for pediatric osteosarcoma which will now have to be tested in preclinical primary patient derived in vivo models and clinical studies.


Assuntos
Apoptose/efeitos dos fármacos , Cisplatino/farmacologia , Osteossarcoma/tratamento farmacológico , Ftalazinas/farmacologia , Pirazinas/farmacologia , Pirazóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Clonais/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Camundongos , Osteossarcoma/patologia , Inibidores de Proteínas Quinases/farmacologia
6.
Int J Hyperthermia ; 37(1): 430-441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32369711

RESUMO

Purpose: Hyperthermia demonstrated clinical efficacy in multimodal cancer treatment. Multipotent mesenchymal stromal cells (MSCs) as part of the tumor-supporting stroma modulate tumor response and tissue regeneration after hyperthermia. We aimed to investigate the effects of hyperthermia on the survival, stem cell characteristics and heat shock expression of human MSCs.Materials and methods: Human MSCs and normal human dermal fibroblasts (NHDFs) were exposed to temperatures between 37 °C and 44 °C for 60 min, and hyperthermic sensitivity was examined by clonogenicity, proliferation and viability assays. The influence of 42 °C hyperthermia on the MSCs' adhesion potential, migratory capacity, surface marker expression and multi-lineage differentiation capability was investigated. Cell cycle distribution, apoptosis and senescence after 42 °C hyperthermia were determined by flow cytometry and ß-galactosidase staining. Heat shock protein expression was determined by Western Blots.Results: MSCs exhibited decreased clonogenic survival after 40 °C and 42 °C hyperthermia compared to NHDFs, while proliferative activity and viability were comparable after hyperthermia up to 44 °C. MSC adhesion was reduced after 42 °C hyperthermia, while the characteristic surface marker expression and the migratory ability remained unaffected in 42 °C hyperthermia-exposed MSCs. 42 °C hyperthermia diminished the adipogenic differential potential of all tested MSC samples. A pronounced G2/M arrest was found after 42 °C hyperthermia and was associated with increased apoptosis and senescence levels in MSCs. MSCs exhibited slightly lower heat shock protein levels compared to NHDFs.Conclusion: Human MSCs exhibit a thermosensitive phenotype which reduced the multipotent cells' regenerative abilities, resulting in impaired tissue regeneration after hyperthermia treatment or thermal injuries. On the other hand, tumor-associated MSCs may be efficiently targeted by hyperthermia treatment.


Assuntos
Hipertermia Induzida/métodos , Células-Tronco Mesenquimais/metabolismo , Movimento Celular , Voluntários Saudáveis , Humanos
7.
Eur J Nucl Med Mol Imaging ; 46(12): 2569-2580, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31388723

RESUMO

PURPOSE: Targeting fibroblast activation protein (FAP) is a new diagnostic approach allowing the visualization of tumor stroma. Here, we applied FAP-specific PET imaging to gliomas. We analyzed the target affinity and specificity of two FAP ligands (FAPI-02 and FAPI-04) in vitro, and the pharmacokinetics and biodistribution in mice in vivo. Clinically, we used 68Ga-labeled FAPI-02/04 for PET imaging in 18 glioma patients (five IDH-mutant gliomas, 13 IDH-wildtype glioblastomas). METHODS: For binding studies with 177Lu-radiolabeled FAPI-02/04, we used the glioblastoma cell line U87MG, FAP-transfected fibrosarcoma cells, and CD26-transfected human embryonic kidney cells. For pharmacokinetic and biodistribution studies, U87MG-xenografted mice were injected with 68Ga-labeled compounds followed by small-animal PET imaging and 177Lu-labeled FAPI-02/04, respectively. Clinical PET/CT scans were performed 30 min post intravenous administration of 68Ga-FAPI-02/04. PET and MRI scans were co-registrated. Immunohistochemistry was done on 14 gliomas using a FAP-specific antibody. RESULTS: FAPI-02 and FAPI-04 showed high binding specificity to FAP. FAPI-04 demonstrated higher tumor accumulation and delayed elimination compared with FAPI-02 in preclinical studies. IDH-wildtype glioblastomas and grade III/IV, but not grade II, IDH-mutant gliomas showed elevated tracer uptake. In glioblastomas, we observed spots with increased uptake in projection on contrast-enhancing areas. Immunohistochemistry showed FAP-positive cells with mainly elongated cell bodies and perivascular FAP-positive cells in glioblastomas and an anaplastic IDH-mutant astrocytoma. CONCLUSIONS: Using FAP-specific PET imaging, increased tracer uptake in IDH-wildtype glioblastomas and high-grade IDH-mutant astrocytomas, but not in diffuse astrocytomas, may allow non-invasive distinction between low-grade IDH-mutant and high-grade gliomas. Therefore, FAP-specific imaging in gliomas may be useful for follow-up studies although further clinical evaluation is required.


Assuntos
Gelatinases/metabolismo , Glioblastoma/genética , Glioblastoma/patologia , Isocitrato Desidrogenase/genética , Proteínas de Membrana/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Serina Endopeptidases/metabolismo , Acebutolol , Adulto , Animais , Transporte Biológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Endopeptidases , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/metabolismo , Humanos , Ligantes , Camundongos , Pessoa de Meia-Idade , Mutação , Naftóis , Gradação de Tumores , Traçadores Radioativos , Triazinas , Adulto Jovem
8.
BMC Cancer ; 19(1): 1074, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31703637

RESUMO

BACKGROUND: Hypofractionated palliative radiotherapy for metastatic lung cancer patients is frequently used in order to ease pain, to increase bone stability, to treat local mass effects, or to prolong progression-free survival at critical sites. Recently introduced, immunotherapy for patients with non-squamous non-small cell lung carcinoma (NSCLC) has significantly improved outcome in this cohort. Preclinical and early clinical data suggest that the combination of photon radiation with programmed death-1 (PD-1) targeting immunotherapies may promote a strong and durable immune response against tumor manifestations both within and beyond radiation targets. METHODS/DESIGN: In the present prospective, two-group, non-randomized, open-label phase II trial, 130 patients with stage IV non-squamous NSCLC in 2nd-line or 3rd-line treatment will be included. 65 patients with a clinical indication for palliative radiotherapy to non-cerebral/non-pulmonary metastatic sites will receive 240 mg nivolumab followed by palliative radiotherapy with 5 × 4 Gray (Gy) = 20 Gy photon radiation, which will be initiated within 72 h after first nivolumab administration (Group A). 65 patients without an indication for radiotherapy will only receive nivolumab (Group B). Nivolumab will be further administered every two weeks in both groups and will be continued until progression and loss of clinical benefit or until occurrence of limiting toxicities. The primary endpoint will be the objective response rate (ORR) according to response evaluation criteria in solid tumors (RECIST) 1.1. Secondary endpoints will be progression-free survival (PFS) according to RECIST 1.1, overall survival, descriptive subgroup analyses according to PD-L1 expression, toxicity and quality of life. Since response patterns following immunotherapies differ from those after conventional cytostatic agents, both objective response rate and progression-free survival will additionally be assessed according to immune-related RECIST (irRECIST) criteria. DISCUSSION: The FORCE study will prospectively investigate response rates, progression-free and overall survival (OS), and toxicity of nivolumab with and without hypofractionated palliative radiotherapy in a group of 130 patients with metastatic non-small cell lung cancer (non-squamous histology) in 2nd-line or 3rd-line treatment. This trial will contribute prospective data to the repeatedly published observation that the combination of hypofractionated photon radiotherapy and medical immunotherapy is not only safe but will also promote antitumoral immune responses. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT03044626 (Date of initial registration: 05 January 2017). Eudra-CT Number: 2015-005741-31 (Date of initial registration: 18 December 2015).


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/terapia , Imunoterapia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/terapia , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/farmacologia , Antígeno B7-H1/análise , Biomarcadores Tumorais/análise , Estudos de Coortes , Terapia Combinada/métodos , Seguimentos , Humanos , Nivolumabe/administração & dosagem , Nivolumabe/efeitos adversos , Nivolumabe/farmacologia , Intervalo Livre de Progressão , Estudos Prospectivos , Qualidade de Vida , Hipofracionamento da Dose de Radiação , Critérios de Avaliação de Resposta em Tumores Sólidos
9.
Radiat Environ Biophys ; 58(3): 417-424, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31127368

RESUMO

Dimethyl sulfoxide (DMSO) is an effective radical scavenger and, when added to cells, reduces the initial number of radiation-induced DNA double-strand breaks (DSB). The aim of this study was to investigate modification by DMSO of both DSB induction and DSB repair by means of pulsed-field gel electrophoresis (PFGE) as well as gamma-H2AX immunofluorescence staining. WiDr cells (human colon carcinoma provided by DKFZ) were incubated with 2% DMSO for 2 h (or mock-treated) prior to irradiation with varying X-ray doses and subsequent incubation for repair. Sample processing for PFGE analysis or counting of γ-H2AX foci was performed according to standard protocols. Effects on apoptosis induction and cell survival were investigated additionally by standard protocols. DMSO reduced DSB yield after 20-80 Gy measured by PFGE. A qualitatively similar result was found after low-dose irradiation (1 Gy) using γ-H2AX immunofluorescence staining. During incubation for repair, both DNA fragment rejoining (PFGE) as well as γ-H2AX foci removal occurred at a reduced rate when cells had been pre-treated with DMSO. But this effect was clearly more pronounced for the PFGE-analyzed double-strand breakage, particularly at early repair times. WiDr cells treated with DMSO (2%) showed a significantly increased clonogenic survival after irradiation doses above 8 Gy. Apoptosis rates were not changed by DMSO. The radio-protective effect of DMSO, well known from other PFGE studies, could be confirmed for the formation of γ-H2AX foci. DSB generated in the presence of DMSO were less rapidly repaired. DMSO showed radio-protective effects on clonogenic survival but not on apoptosis.


Assuntos
Dimetil Sulfóxido/química , Relação Dose-Resposta à Radiação , Sequestradores de Radicais Livres/química , Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , DNA/efeitos da radiação , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Eletroforese em Gel de Campo Pulsado , Humanos , Protetores contra Radiação/química
10.
J Neurosci ; 37(29): 6837-6850, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28607172

RESUMO

Early and progressive colonization of the healthy brain is one hallmark of diffuse gliomas, including glioblastomas. We recently discovered ultralong (>10 to hundreds of microns) membrane protrusions [tumor microtubes (TMs)] extended by glioma cells. TMs have been associated with the capacity of glioma cells to effectively invade the brain and proliferate. Moreover, TMs are also used by some tumor cells to interconnect to one large, resistant multicellular network. Here, we performed a correlative gene-expression microarray and in vivo imaging analysis, and identified novel molecular candidates for TM formation and function. Interestingly, these genes were previously linked to normal CNS development. One of the genes scoring highest in tests related to the outgrowth of TMs was tweety-homolog 1 (TTYH1), which was highly expressed in a fraction of TMs in mice and patients. Ttyh1 was confirmed to be a potent regulator of normal TM morphology and of TM-mediated tumor-cell invasion and proliferation. Glioma cells with one or two TMs were mainly responsible for effective brain colonization, and Ttyh1 downregulation particularly affected this cellular subtype, resulting in reduced tumor progression and prolonged survival of mice. The remaining Ttyh1-deficient tumor cells, however, had more interconnecting TMs, which were associated with increased radioresistance in those small tumors. These findings imply a cellular and molecular heterogeneity in gliomas regarding formation and function of distinct TM subtypes, with multiple parallels to neuronal development, and suggest that Ttyh1 might be a promising target to specifically reduce TM-associated brain colonization by glioma cells in patients.SIGNIFICANCE STATEMENT In this report, we identify tweety-homolog 1 (Ttyh1), a membrane protein linked to neuronal development, as a potent driver of tumor microtube (TM)-mediated brain colonization by glioma cells. Targeting of Ttyh1 effectively inhibited the formation of invasive TMs and glioma growth, but increased network formation by intercellular TMs, suggesting a functional and molecular heterogeneity of the recently discovered TMs with potential implications for future TM-targeting strategies.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteínas de Membrana/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica
11.
Int J Cancer ; 143(11): 2628-2639, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931767

RESUMO

Chemotherapeutic agents are part of the standard treatment algorithms for many malignancies; however, their application and dosage are limited by their toxic effects to normal tissues. Chemotherapy-induced toxicities can be long-lasting and may be incompletely reversible; therefore, causative therapies for chemotherapy-dependent side effects are needed, especially considering the increasing survival rates of treated cancer patients. Mesenchymal stem cells (MSCs) have been shown to exhibit regenerative abilities for various forms of tissue damage. Preclinical data suggest that MSCs may also help to alleviate tissue lesions caused by chemotherapeutic agents, mainly by establishing a protective microenvironment for functional cells. Due to the systemic administration of most anticancer agents, the effects of these drugs on the MSCs themselves are of crucial importance to use stem cell-based approaches for the treatment of chemotherapy-induced tissue toxicities. Here, we present a concise review of the published data regarding the influence of various classes of chemotherapeutic agents on the survival, stem cell characteristics and physiological functions of MSCs. Molecular mechanisms underlying the effects are outlined, and resulting challenges of MSC-based treatments for chemotherapy-induced tissue injuries are discussed.


Assuntos
Antineoplásicos/efeitos adversos , Células-Tronco Mesenquimais/citologia , Algoritmos , Animais , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos
12.
Strahlenther Onkol ; 194(5): 425-434, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29349601

RESUMO

BACKGROUND: The present work aimed to analyze the feasibility of a shuttle-based MRI-guided radiation therapy (MRgRT) in the treatment of pelvic malignancies. PATIENTS AND METHODS: 20 patients with pelvic malignancies were included in this prospective feasibility analysis. Patients underwent daily MRI in treatment position prior to radiotherapy at the German Cancer Research Center. Positional inaccuracies, time and patient compliance were assessed for the application of off-line MRgRT. RESULTS: In 78% of applied radiation fractions, MR imaging for position verification could be performed without problems. Additionally, treatment-related side effects and reduced patient compliance were only responsible for omission of MRI in 9% of radiation fractions. The study workflow took a median time of 61 min (range 47-99 min); duration for radiotherapy alone was 13 min (range 7-26 min). Patient positioning, MR imaging and CT imaging including patient repositioning and the shuttle transfer required median times of 10 min (range 7-14 min), 26 min (range 15-60 min), 5 min (range 3-8 min) and 8 min (range 2-36 min), respectively. To assess feasibility of shuttle-based MRgRT, the reference point coordinates for the x, y and z axis were determined for the MR images and CT obtained prior to the first treatment fraction and correlated with the coordinates of the planning CT. In our dataset, the median positional difference between MR imaging and CT-based imaging based on fiducial matching between MR and CT imaging was equal to or less than 2 mm in all spatial directions. The limited space in the MR scanner influenced patient selection, as the bore of the scanner had to accommodate the immobilization device and the constructed stereotactic frame. Therefore, obese, extremely muscular or very tall patients could not be included in this trial in addition to patients for whom exposure to MRI was generally judged inappropriate. CONCLUSION: This trial demonstrated for the first time the feasibility and patient compliance of a shuttle-based off-line approach to MRgRT of pelvic malignancies.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Pélvicas/radioterapia , Radioterapia Guiada por Imagem/métodos , Adulto , Idoso , Tomografia Computadorizada de Feixe Cônico , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Avaliação de Processos e Resultados em Cuidados de Saúde , Posicionamento do Paciente , Neoplasias Pélvicas/diagnóstico por imagem , Neoplasias Pélvicas/patologia , Estudos Prospectivos
13.
Respir Res ; 19(1): 14, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29347981

RESUMO

BACKGROUND: Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. METHODS: To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. RESULTS: At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CONCLUSIONS: CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.


Assuntos
Anticorpos Monoclonais/farmacologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Pulmão/metabolismo , Pulmão/efeitos da radiação , Fibrose Pulmonar/metabolismo , Lesões Experimentais por Radiação/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Feminino , Expressão Gênica , Pulmão/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Mastócitos/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/etiologia , Lesões Experimentais por Radiação/tratamento farmacológico
14.
FASEB J ; 30(8): 2767-76, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27166088

RESUMO

Carbon ion radiation is a promising new form of radiotherapy for cancer, but the central question about the biologic effects of charged particle radiation is yet incompletely understood. Key to this question is the understanding of the interaction of ions with DNA in the cell's nucleus. Induction and repair of DNA lesions including double-strand breaks (DSBs) are decisive for the cell. Several DSB repair markers have been used to investigate these processes microscopically, but the limited resolution of conventional microscopy is insufficient to provide structural insights. We have applied superresolution microscopy to overcome these limitations and analyze the fine structure of DSB repair foci. We found that the conventionally detected foci of the widely used DSB marker γH2AX (Ø 700-1000 nm) were composed of elongated subfoci with a size of ∼100 nm consisting of even smaller subfocus elements (Ø 40-60 nm). The structural organization of the subfoci suggests that they could represent the local chromatin structure of elementary DSB repair units at the DSB damage sites. Subfocus clusters may indicate induction of densely spaced DSBs, which are thought to be associated with the high biologic effectiveness of carbon ions. Superresolution microscopy might emerge as a powerful tool to improve our knowledge of interactions of ionizing radiation with cells.-Lopez Perez, R., Best, G., Nicolay, N. H., Greubel, C., Rossberger, S., Reindl, J., Dollinger, G., Weber, K.-J., Cremer, C., Huber, P. E. Superresolution light microscopy shows nanostructure of carbon ion radiation-induced DNA double-strand break repair foci.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Radioterapia com Íons Pesados , Microscopia/métodos , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos
15.
Strahlenther Onkol ; 192(7): 458-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27245818

RESUMO

PURPOSE: The aim of this work was to evaluate outcomes and toxicities of high dose-rate (HDR) endoluminal brachytherapy in a cohort of esophageal cancer patients. PATIENTS AND METHODS: We analyzed the records of 36 patients treated with HDR brachytherapy for histologically confirmed esophageal cancer. Brachytherapy was either applied as a boost treatment for definitive treatment regimens or as salvage therapy for recurrent tumors with single doses between 4 and 6 Gy. Survival and toxicities were retrospectively analyzed. RESULTS: Brachytherapy was performed as initially planned in all but one patient; 18 patients had a complete endoscopic response at the first follow-up examination. Locoregional recurrence was observed in 24 patients after a median time of 3 months; 1­ and 2­year recurrence-free survival rates were 51  and 51 % for the patients treated for primary tumors and 11 and 6 % for patients treated for tumor recurrence, respectively. Median overall survival was 18 months; estimated overall survival rates at 1, 2, and 3 years were 63, 50, and 30 % after primary brachytherapy, and 60, 25, and 6 % after recurrence therapy. Adenocarcinoma histology, non-complete remission after treatment, and treatment for recurrent cancers were associated with significantly reduced prognoses. Mild dysphagia was the most common side effect in 17 patients; 8 patients suffered from locoregional grade 3 toxicities, and no grade 4 or 5 toxicities were observed. CONCLUSIONS: Endoluminal brachytherapy during the course of esophageal cancer treatment can be safely applied and results in good functional outcomes regarding dysphagia with low rates of severe toxicities.


Assuntos
Braquiterapia/mortalidade , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/radioterapia , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/radioterapia , Hipofracionamento da Dose de Radiação , Adulto , Idoso , Idoso de 80 Anos ou mais , Braquiterapia/métodos , Braquiterapia/estatística & dados numéricos , Estudos de Coortes , Intervalo Livre de Doença , Neoplasias Esofágicas/patologia , Alemanha/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/patologia , Prevalência , Estudos Retrospectivos , Fatores de Risco , Taxa de Sobrevida , Resultado do Tratamento
16.
Cancer ; 121(17): 3001-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26043145

RESUMO

BACKGROUND: Local control in patients with adenoid cystic carcinoma (ACC) of the head and neck remains a challenge because of the relative radioresistance of these tumors. This prospective carbon ion pilot project was designed to evaluate the efficacy and toxicity of intensity-modulated radiotherapy (IMRT) plus carbon ion (C12) boost (C12 therapy). The authors present the first analysis of long-term outcomes of raster-scanned C12 therapy compared with modern photon techniques. METHODS: Patients with inoperable or subtotally resected ACC received C12 therapy within the pilot project. Whenever C12 was not available, patients were offered IMRT or fractionated stereotactic radiotherapy (FSRT). Patients received either C12 therapy at a C12 dose of 3 Gray equivalents (GyE) per fraction up to 18 GyE followed by 54 Gray (Gy) of IMRT or IMRT up to a median total dose of 66 Gy. Toxicity was evaluated according to version 3 of the Common Toxicity Terminology for Adverse Events. Locoregional control (LC), progression-free survival (PFS), and overall survival (OS) were analyzed using the Kaplan-Meier method. RESULTS: Fifty-eight patients received C12 therapy, and 37 received photons (IMRT or FSRT). The median follow-up was 74 months in the C12 group and 63 months in the photon group. Overall, 90% of patients in the C12 group and 94% of those in the photon group had T4 tumors; and the most common disease sites were paranasal sinus, parotid with skull base invasion, and nasopharynx. LC, PFS, and OS at 5 years were significantly higher in the C12 group (59.6%, 48.4%, 76.5%, respectively) compared with the photon group (39.9%, 27%, and 58.7%, respectively). There was no significant difference between patients who had subtotally resected and inoperable ACC. CONCLUSIONS: C12 therapy resulted in superior LC, PFS, and OS without a significant difference between patients with inoperable and partially resected ACC. Extensive and morbid resections in patients with advanced ACC may need to be reconsidered. The most common site of locoregional recurrence remains in field, and further C12 dose escalation should be evaluated.


Assuntos
Carcinoma Adenoide Cístico/radioterapia , Neoplasias de Cabeça e Pescoço/radioterapia , Adulto , Idoso , Carcinoma Adenoide Cístico/mortalidade , Intervalo Livre de Doença , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Radioterapia de Intensidade Modulada , Resultado do Tratamento , Adulto Jovem
17.
J Transl Med ; 13: 136, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25926029

RESUMO

BACKGROUND: Osteosarcoma (OS) is the most common pediatric primary malignant bone tumor. As the prognosis for patients following standard treatment did not improve for almost three decades, functional preclinical models that closely reflect important clinical cancer characteristics are urgently needed to develop and evaluate new treatment strategies. The objective of this study was to establish an orthotopic xenotransplanted mouse model using patient-derived tumor tissue. METHODS: Fresh tumor tissue from an adolescent female patient with osteosarcoma after relapse was surgically xenografted into the right tibia of 6 immunodeficient BALB/c Nu/Nu mice as well as cultured into medium. Tumor growth was serially assessed by palpation and with magnetic resonance imaging (MRI). In parallel, a primary cell line of the same tumor was established. Histology and high-resolution array-based comparative genomic hybridization (aCGH) were used to investigate both phenotypic and genotypic characteristics of different passages of human xenografts and the cell line compared to the tissue of origin. RESULTS: A primary OS cell line and a primary patient-derived orthotopic xenotranplanted mouse model were established. MRI analyses and histopathology demonstrated an identical architecture in the primary tumor and in the xenografts. Array-CGH analyses of the cell line and all xenografts showed highly comparable patterns of genomic progression. So far, three further primary patient-derived orthotopic xenotranplanted mouse models could be established. CONCLUSION: We report the first orthotopic OS mouse model generated by transplantation of tumor fragments directly harvested from the patient. This model represents the morphologic and genomic identity of the primary tumor and provides a preclinical platform to evaluate new treatment strategies in OS.


Assuntos
Neoplasias Ósseas/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Modelos Animais de Doenças , Osteossarcoma/patologia , Adolescente , Animais , Hibridização Genômica Comparativa , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Fenótipo , Prognóstico , Recidiva , Microtomografia por Raio-X
18.
BMC Cancer ; 15: 988, 2015 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26686362

RESUMO

BACKGROUND: Lung cancer is the leading cause of cancer deaths worldwide. Surgery, radiotherapy at conventional and high dose and chemotherapy are the mainstay for lung cancer treatment. Insufficient migration and activation of tumour specific effector T cells seem to be important reasons for inadequate host anti-tumour immune response. Ionizing radiation can induce a variety of immune responses. The goal of this randomized trial is to assess if a preoperative single fraction low dose radiation is able to improve anti-tumour immune response in operable early stage lung cancer. METHODS/DESIGN: This trial has been designed as an investigator-initiated, prospective, randomized, 2-armed phase II trial. Patients who are candidates for elective resection of early stage non-small cell lung cancer will be randomized into 2 arms. A total of 36 patients will be enrolled. The patients receive either 2 Gy or no radiation prescribed to their primary tumour. Radiation will be delivered by external beam radiotherapy using 3D radiotherapy or intensity-modulated radiation technique (IMRT) 7 days prior to surgical resection. The primary objective is to compare CD8+ T cell counts detected by immunohistochemistry in resected tumours following preoperative radiotherapy versus no radiotherapy. Secondary objectives include the association between CD8+ T cell counts and progression free survival, the correlation of CD8+ T cell counts quantified by immunohistochemistry and flow cytometry, local tumour control and recurrence patterns, survival, radiogenic treatment toxicity and postoperative morbidity and mortality. Further, frequencies of tumour reactive T cells in blood and bone marrow as well as whole blood cell transcriptomics and plasma-proteomics will be correlated with clinical outcome. DISCUSSION: This unique intervention combining preoperative low dose radiation and surgical removal of early stage non-small cell lung cancer is designed to address the problem of inadequate host anti-tumour immune response. If successful, this study may affect the role of radiotherapy in lung cancer treatment. TRIAL REGISTRATION: NCT02319408; REGISTRATION: December 29, 2014.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Imunidade Celular/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/radioterapia , Seguimentos , Humanos , Estudos Prospectivos , Radioterapia de Intensidade Modulada/métodos
19.
Respiration ; 89(6): 550-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25968471

RESUMO

BACKGROUND: The best therapy for patients with stage I non-small cell lung cancer (NSCLC) who are medically unfit for lobectomy or prefer not to undergo surgery has not yet been demonstrated. OBJECTIVES: We analyzed data from our prospective database to evaluate the recurrence and survival rates and assess the extent to which the type of treatment explains outcome differences. METHODS: This study included 116 patients with histologically proven clinical stage I NSCLC who were treated with sublobar resection (SLR; n = 42), radiofrequency ablation (RFA; n = 25) or radiotherapy (RT; n = 49) between 2009 and 2013. The primary end point was the time to primary tumor recurrence (PR). Kaplan-Meier curves and Cox regression were used to compare the recurrence patterns and survivals after adjustments for potential confounders. RESULTS: The SLR patients were younger and exhibited better performance status. The RT patients had larger tumors. After adjusting for age and tumor size, there were differences between the different treatments in terms of the PR rate, but no differences were observed in overall (OS) or disease-free survival. The hazard ratio for PR comparing SLR versus RT adjusted for age and tumor size was 2.73 (95% confidence interval, CI, 0.72-10.27) and that for SLR versus RFA was 7.57 (95% CI 1.94-29.47). CONCLUSIONS: Our study suggests that SLR was associated with a higher primary tumor control rate compared to RFA or RT, although the OSs were not different. These results should be confirmed in prospective trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Ablação por Cateter , Neoplasias Pulmonares , Recidiva Local de Neoplasia , Pneumonectomia , Adenocarcinoma/patologia , Adenocarcinoma/radioterapia , Adenocarcinoma/cirurgia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/cirurgia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/cirurgia , Estudos de Coortes , Bases de Dados Factuais , Feminino , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirurgia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento , Carga Tumoral
20.
Strahlenther Onkol ; 190(11): 1037-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24863573

RESUMO

INTRODUCTION: Mesenchymal stem cells (MSCs) can regenerate damaged tissues and may therefore be of importance for normal tissue repair after cancer treatment. Small molecule receptor kinase inhibitors (RKIs) have recently been introduced into cancer treatment. However, the influence of these drugs-particularly in combination with radiotherapy-on the survival of MSCs is largely unknown. METHODS: The sensitivity of human primary MSCs from healthy volunteers and primary human fibroblast cells to small molecule kinase inhibitors of the vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF) and transforming growth factor ß (TGFß) receptors, as well to inhibitors of c-Kit, was examined in combination with ionizing radiation (IR); cell survival and proliferation were assessed. Expression patterns of different kinase receptors and ligands were investigated using gene arrays. RESULTS: MSCs were highly sensitive to the tyrosine kinase inhibitors SU14816 (imatinib) and SU11657 (sunitinib), but showed only moderate sensitivity to the selective TGFß receptor 1 inhibitor LY2109761. Primary adult human fibroblasts were comparably resistant to all three inhibitors. The addition of IR had an additive or supra-additive effect in the MSCs, but this was not the case for differentiated fibroblasts. Proliferation was markedly reduced in MSCs following kinase inhibition, both with and without IR. Gene expression analysis revealed high levels of the PDGF α and ß receptors, and lower levels of the TGFß receptor 2 and Abl kinase. IR did not alter the expression of kinase receptors or their respective ligands in either MSCs or adult fibroblasts. CONCLUSION: These data show that MSCs are highly sensitive to RKIs and combination treatments incorporating IR. Expression analyses suggest that high levels of PDGF receptors may contribute to this effect.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Inibidores de Proteínas Quinases/administração & dosagem , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Apoptose/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos da radiação , Doses de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA