Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 180: 156652, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759527

RESUMO

C5a peptidase, also known as ScpA, is a surface associated serine protease derived from Streptococcus pyogenes and has been described as an important factor in streptococcus virulence, capable of cleaving complement components C5a, C3 and C3a. Although the interactions of ScpA with complement components is well studied, extensive screening of ScpA activity against other pro-inflammatory cytokines is lacking. Here, ScpA's ability to cleave human pro-inflammatory cytokines was tested, revealing its ability to cleave human IFNγ, IFNλ1, IFNλ2, C5, IL-37 but with significantly reduced activities. The functional consequence of ScpA's cleavage of IFNγ in its signalling through the Jak-Stat pathway has also been evaluated in an in vitro RPE1 cell model. These newly identified targets for ScpA highlight the complexity of streptococcus infections and indeed, the potential for ScpA to have a therapeutic role in the progression of inflammatory diseases involving these cytokines.


Assuntos
Interferon gama , Interferons , Humanos , Interferons/metabolismo , Interferon gama/metabolismo , Transdução de Sinais , Streptococcus pyogenes/enzimologia , Citocinas/metabolismo , Linhagem Celular , Interferon lambda , Proteínas de Bactérias/metabolismo
2.
Angew Chem Int Ed Engl ; 63(10): e202312100, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38055699

RESUMO

The early stages of the molecular self-assembly pathway leading to crystal nucleation have a significant influence on the properties and purity of organic materials. This mini review collates the work on organic mesoscale clusters and discusses their importance in nucleation processes, with a particular focus on their critical properties and susceptibility to sample treatment parameters. This is accomplished by a review of detection methods, including dynamic light scattering, nanoparticle tracking analysis, small angle X-ray scattering, and transmission electron microscopy. Considering the challenges associated with crystallisation of flexible and large-molecule active pharmaceutical ingredients, the dynamic nature of mesoscale clusters has the potential to expand the discovery of novel crystal forms. By collating literature on mesoscale clusters for organic molecules, a more comprehensive understanding of their role in nucleation will evolve and can guide further research efforts.

3.
Mol Pharm ; 20(8): 4041-4049, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406301

RESUMO

Posttranslational modifications of proteins can impact their therapeutic efficacy, stability, and potential for pharmaceutical development. The Group AStreptococcus pyogenesC5a peptidase (ScpA) is a multi-domain protein composed of an N-terminal signal peptide, a catalytic domain (including propeptide), three fibronectin domains, and cell membrane-associated domains. It is one of several proteins produced by Group AS. pyogenesknown to cleave components of the human complement system. After signal peptide removal, ScpA undergoes autoproteolysis and cleaves its propeptide for full maturation. The exact location and mechanism of the propeptide cleavage, and the impact of this cleavage on stability and activity, are not clearly understood, and the exact primary sequence of the final enzyme is not known. A form of ScpA with no autoproteolysis fragments of propeptide present may be more desirable for pharmaceutical development from a regulatory and a biocompatibility in the body perspective. The current study describes an in-depth structural and functional characterization of propeptide truncated variants of ScpA expressed inEscherichia colicells. All three purified ScpA variants, ScpA, 79ΔPro, and 92ΔPro, starting with N32, D79, and A92 positions, respectively, showed similar activity against C5a, which suggests a propeptide-independent activity profile of ScpA. CE-SDS and MALDI top-down sequencing analyses highlight a time-dependent propeptide autoproteolysis of ScpA at 37 °C with a distinct end point at A92 and/or D93. In comparison, all three variants of ScpA exhibit similar stability, melting temperatures, and secondary structure orientation. In summary, this work not only highlights propeptide localization but also provides a strategy to recombinantly produce a final mature and active form of ScpA without any propeptide-related fragments.


Assuntos
Produtos Biológicos , Streptococcus pyogenes , Humanos , Streptococcus pyogenes/metabolismo , Endopeptidases/metabolismo , Sinais Direcionadores de Proteínas
4.
Pharm Res ; 40(7): 1709-1722, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460023

RESUMO

PURPOSE: To investigate the difference in methods to determine the osmolality in solutions of stabilizers used for long-acting injectable suspensions. METHODS: The osmolality was measured by freezing point depression and vapor pressure for 11 different polymers and surfactants (PEG 3350, 4000, 6000, 8000, 20,000, PVP K12, K17 and K30, poloxamer 188, 388 and 407, HPMC E5, Na-CMC, polysorbate 20 and 80, vitamin E-TPGS, phospholipid, DOSS and SDS) in different concentrations. RESULTS: Independently of the measuring method, an increase in osmolality with increasing concentration was observed for all polymers and surfactants, as would be expected due to the physicochemical origin of the osmolality. No correlation was found between the molecular weight of the polymers and the measured osmolality. The osmolality values were different for PVPs, PEGs, and Na-CMC using the two different measurement methods. The values obtained by the freezing point depression method tended to be similar or higher than the ones provided by vapor pressure, overall showing a significant difference in the osmolality measured by the two investigated methods. CONCLUSIONS: For lower osmolality values (e.g. surfactants), the choice of the measuring method was not critical, both the freezing point depression and vapor pressure could be used. However, when the formulations contained higher concentrations of excipients and/or thermosensitive excipients, the data suggests that the vapor pressure method would be more suited.


Assuntos
Depressão , Excipientes , Pressão de Vapor , Congelamento , Concentração Osmolar , Polímeros , Tensoativos
5.
Mol Pharm ; 18(10): 3777-3794, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34547899

RESUMO

Antihistamines are capable of blocking mediator responses in allergic reactions including allergic rhinitis and dermatological reactions. By incorporating various H1 receptor antagonists into a lipid cubic phase network, these active ingredients can be delivered locally over an extended period of time owing to the mucoadhesive nature of the system. Local delivery can avoid inducing unwanted side effects, often observed after systematic delivery. Lipid-based antihistamine delivery systems are shown here to exhibit prolonged release capabilities. In vitro drug dissolution studies investigated the extent and release rate of two model first-generation and two model second-generation H1 antagonist antihistamine drugs from two monoacyglycerol-derived lipid models. To optimize the formulation approach, the systems were characterized macroscopically and microscopically by small-angle X-ray scattering and polarized light to ascertain the mesophase accessed upon an incorporation of antihistamines of varying solubilities and size. The impact of encapsulating the antihistamine molecules on the degree of mucoadhesivity of the lipid cubic systems was investigated using multiparametric surface plasmon resonance. With the ultimate goal of developing therapies for the treatment of allergic reactions, the ability of the formulations to inhibit mediator release utilizing RBL-2H3 mast cells with the propensity to release histamine upon induction was explored, demonstrating no interference from the lipid excipient on the effectiveness of the antihistamine molecules.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Antagonistas dos Receptores Histamínicos/administração & dosagem , Bicamadas Lipídicas/administração & dosagem , Humanos , Mucosa Nasal/metabolismo
6.
J Mol Recognit ; 32(2): e2761, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30133028

RESUMO

A deep understanding of the molecular interactions of carbon nanodots with biomacromolecules is essential for wider applications of carbon nanodots both in vitro and in vivo. Herein, nitrogen and sulfur co-doped carbon dots (N,S-CDs) with a quantum yield of 16% were synthesized by a 1-step hydrothermal method. The N,S-CDs exhibited a good dispersion, with a graphite-like structure, along with the fluorescence lifetime of approximately 7.50 ns. Findings showed that the fluorescence of the N,S-CDs was effectively quenched by bovine hemoglobin as a result of the static fluorescence quenching. The mentioned quenching mechanism was investigated by the Stern-Volmer equation, temperature-dependent quenching, and fluorescence lifetime measurements. The binding constants, number of binding sites, and the binding average distance between the energy donor N,S-CDs and acceptor bovine hemoglobin were calculated as well. These findings will provide for valuable insights on the future bioapplications of N,S-CDs.


Assuntos
Carbono/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Nitrogênio/química , Enxofre/química , Animais , Bovinos , Pontos Quânticos
8.
J Cardiovasc Magn Reson ; 18: 8, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830817

RESUMO

BACKGROUND: UK Biobank's ambitious aim is to perform cardiovascular magnetic resonance (CMR) in 100,000 people previously recruited into this prospective cohort study of half a million 40-69 year-olds. METHODS/DESIGN: We describe the CMR protocol applied in UK Biobank's pilot phase, which will be extended into the main phase with three centres using the same equipment and protocols. The CMR protocol includes white blood CMR (sagittal anatomy, coronary and transverse anatomy), cine CMR (long axis cines, short axis cines of the ventricles, coronal LVOT cine), strain CMR (tagging), flow CMR (aortic valve flow) and parametric CMR (native T1 map). DISCUSSION: This report will serve as a reference to researchers intending to use the UK Biobank resource or to replicate the UK Biobank cardiovascular magnetic resonance protocol in different settings.


Assuntos
Bancos de Espécimes Biológicos , Protocolos Clínicos , Cardiopatias/diagnóstico , Imagem Cinética por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Feminino , Cardiopatias/patologia , Cardiopatias/terapia , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Reino Unido
10.
Bioorg Med Chem Lett ; 24(15): 3398-402, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24939756

RESUMO

Extensive phase II metabolism of an advanced PKCε inhibitor resulted in sub-optimal pharmacokinetics in rat marked by elevated clearance. Synthesis of the O-glucuronide metabolite as a standard was followed by three distinct strategies to specifically temper phase II metabolic degradation of the parent molecule. In this study, it was determined that the introduction of proximal polarity to the primary alcohol generally curbed O-glucuronidation and improved PK and physical chemical properties while maintaining potency against the target. Utilization of a Jacobsen hydrolytic kinetic resolution to obtain optically enriched final compounds is also discussed.


Assuntos
Glucuronídeos/farmacologia , Proteína Quinase C-épsilon/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Cães , Relação Dose-Resposta a Droga , Glucuronídeos/química , Glucuronídeos/metabolismo , Estrutura Molecular , Proteína Quinase C-épsilon/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
11.
J Mater Chem B ; 12(6): 1558-1568, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38252026

RESUMO

According to the World Health Organization, antimicrobial resistance is one of the top ten issues that pose a major threat to humanity. The lack of investment by the pharmaceutical industry has meant fewer novel antimicrobial agents are in development, exacerbating the problem. Emerging drug design strategies are exploring the repurposing of existing drugs and the utilization of novel drug candidates, like antimicrobial peptides, to combat drug resistance. This proactive approach is crucial in fighting global health threats. In this study, an additive combination of a repurposed anti-leprosy drug, clofazimine, and an antimicrobial peptide, nisin A, are preformulated using liquid antisolvent precipitation to generate a stable amorphous, ionized nanoparticle system to boost antimicrobial activity. The nanotechnology aims to improve the physicochemical properties of the inherently poorly water-soluble clofazimine molecules while also harnessing the previously unreported additive effect of clofazimine and nisin A. The approach transformed clofazimine into a more water-soluble salt, yielding amorphous nanoparticles stabilized by the antimicrobial peptide; and combined the two drugs into a more soluble and more active formulation. Blending pre-formulation strategies like amorphization, salt formation, and nanosizing to improve the inherent low aqueous solubility of drugs can open many new possibilities for the design of new antimicrobial agents. This fusion of pre-formulation technologies in combination with the multi-hurdle approach of selecting drugs with different effects on microbes could be key in the design platform of new antibiotics in the fight against antimicrobial resistance.


Assuntos
Anti-Infecciosos , Clofazimina , Nisina , Clofazimina/química , Peptídeos Antimicrobianos , Água
12.
Int J Pharm ; 651: 123743, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38151103

RESUMO

HYPOTHESIS: The stabilization and isolation to dryness of drug nanoparticles has always been a challenge for nano-medicine production. In the past, the use of montmorillonite (MMT) clay carrier particles to adsorb drug nanoparticles and maintain their high surface area to volume ratio after isolation to dryness has proven to be effective. We hypothesise that the distribution of hydrophilic and hydrophobic patches on the clay's surface as well as its porosity/roughness, hinder the agglomeration of the drug nanoparticles to the extent that they retain their high surface area to volume ratio and display fast dissolution profiles. EXPERIMENTS: In this work, the distribution of hydrophobicity and hydrophilicity, and the porosity/roughness, of the surface of selected silica carrier particles were varied and the impact of these variations on drug nanoparticle attachment to the carrier particle and subsequent dissolution profiles was studied. FINDINGS: The fastest dissolution profiles at the highest drug nanoparticle loadings were obtained with a periodic mesoporous organosilane carrier particle which had a homogeneous distribution of hydrophobic and hydrophilic surface properties. Carrier particles with rough/porous surfaces and a combination of hydrophobic and hydrophilic patches resulted in nanocomposite powders with faster dissolution behaviour than carrier particles with predominantly either a hydrophobic or hydrophilic surface, or with non-porous/smoother surfaces.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Argila , Solubilidade , Nanopartículas/química , Dióxido de Silício/química , Propriedades de Superfície , Tamanho da Partícula
13.
Int J Pharm ; 654: 123918, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38401875

RESUMO

Thuricin CD is a two-peptide antimicrobial produced by Bacillus thuringiensis. Unlike previous antibiotics, it has shown narrow spectrum activity against Clostridioides difficile, a bacterium capable of causing infectious disease in the colon. However, peptide antibiotics have stability, solubility, and permeability problems that can affect their performance in vivo. This work focuses on the bioactivity and bioavailability of thuricin CD with a view to developing a formulation for delivery of active thuricin CD peptides through the gastrointestinal tract (GIT) for local delivery in the colon. The results indicate that thuricin CD is active at low concentrations only when both peptides are present. While thuricin CD was degraded by proteases and was unstable and poorly soluble in gastric fluid, it showed increased solubility in intestinal fluid, probably due to micelle encapsulation. Based on this, thuricin CD was encapsulated in anionic liposomes, which showed increased activity compared to the free peptide, maintained activity after exposure to pepsin in gastric fluid and intestinal fluid, was stable in suspension for over 21 days at room temperature and for 60 days at 4 °C, and exhibited no toxicity to epithelial intestinal cells. These findings suggest that an anionic lipid-based nano formulation may be a promising approach for local oral delivery of thuricin CD.


Assuntos
Bacteriocinas , Lipossomos , Peptídeos Antimicrobianos , Antibacterianos/farmacologia
14.
Front Vet Sci ; 11: 1379980, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983768

RESUMO

Clinical metrics of baseline health in sentinel seabird species can offer insight into marine ecosystem dynamics, individual and population health, and assist in wildlife rehabilitation and conservation efforts. Protein electrophoresis is useful for detecting changes in acute phase proteins and immunoglobulin levels that may indicate subtle inflammatory responses and/or infectious disease. Serum biochemistry can highlight nutritional status, metabolic derangements, and organ injury and function. However, baseline values for such health parameters are largely unknown for many seabird species. Therefore, the objective of this study is to establish baseline clinical health reference intervals for serum protein electrophoresis, acute phase proteins including serum amyloid A and haptoglobin, and biochemistry parameters in the rhinoceros auklet (Cerorhinca monocerata), a key sentinel species in the North Pacific. From 2013 to 2019, 178 wild, apparently healthy breeding adult rhinoceros auklets were captured across four breeding colonies in British Columbia, Canada (Lucy Island, Pine Island, Triangle Islands, and SGang Gwaay) and from one colony in Washington, United States (Protection Island). Reference intervals were calculated for protein electrophoresis fractions and acute phase proteins (n = 163), and serum biochemistry (n = 35) following established guidelines by the American Society of Veterinary Clinical Pathology. Animals were also assessed for the presence of antibodies to the influenza A virus. Approximately 48% (70/147) of sampled birds were seropositive for influenza A virus, with a prevalence of 50% (6/12) in 2013, 75% (47/63) in 2014, and 24% (17/72) in 2019. This work provides clinical baseline health metrics of a key North Pacific sentinel species to help inform marine ecosystem monitoring, recovery, and rehabilitation efforts in the Pacific Northwest.

15.
Org Process Res Dev ; 27(11): 2020-2034, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38025987

RESUMO

The impact of single or combinations of additives on the generation of nanosuspensions of two poorly water-soluble active pharmaceutical ingredients (APIs), fenofibrate (FF) and dalcetrapib (DCP), and their isolation to the dry state via antisolvent (AS) crystallization followed by freeze-drying was explored in this work. Combinations of polymeric and surfactant additives such as poly(vinyl alcohol) or hydroxypropyl methyl cellulose and sodium docusate were required to stabilize nanoparticles (∼200-300 nm) of both APIs in suspension before isolation to dryness. For both FF and DCP, multiple additives generated the narrowest, most-stable particle size distribution, with the smallest particles in suspension, compared with using a single additive. An industrially recognized freeze-drying process was used for the isolation of these nanoparticles to dryness. When processed by the liquid AS crystallization followed by freeze-drying in the presence of multiple additives, a purer monomorphic powder for FF resulted than when processed in the absence of any additive or in the presence of a single additive. It was noted that all nanoparticles freeze-dried in the presence of additives had a flat, flaky habit resulting in large surface areas. Agglomeration occurred during freeze-drying, resulting in micron-size particles. However, after freeze-drying, powders produced with single or multiple additives showed similar dissolution profiles, irrespective of aging time before drying, thus attenuating the advantage of multiple additives in terms of size observed before the freeze-drying process.

16.
Drug Deliv Transl Res ; 13(1): 308-319, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35851672

RESUMO

In the design of injectable antimicrobial dextran-alginate hydrogels, the impact of dextran oxidation and its subsequent changes in molecular weight and the incorporation of glycol chitosan on (i) gel mechanical strength and (ii) the inhibitory profile of an encapsulated bacteriocin, nisin A, are explored. As the degree of oxidation increases, the weight average molecular mass of the dextran decreases, resulting in a reduction in elastic modulus of the gels made. Upon encapsulation of the bacteriocin nisin into the gels, varying the dextran mass/oxidation level allowed the antimicrobial activity against S. aureus to be controlled. Gels made with a higher molecular weight (less oxidised) dextran show a higher initial degree of inhibition while those made with a lower molecular weight (more oxidised) dextran exhibit a more sustained inhibition. Incorporating glycol chitosan into gels composed of dextran with higher masses significantly increased their storage modulus and the gels' initial degree of inhibition.


Assuntos
Anti-Infecciosos , Bacteriocinas , Hidrogéis , Dextranos , Staphylococcus aureus
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122872, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37209478

RESUMO

Monoclonal antibodies provide highly specific and effective therapies for the treatment of chronic diseases. These protein-based therapeutics, or drug substances, are transported in single used plastic packaging to fill finish sites. According to good manufacturing practice guidelines, each drug substance needs to be identified before manufacturing of the drug product. However, considering their complex structure, it is challenging to correctly identify therapeutic proteins in an efficient manner. Common analytical techniques for therapeutic protein identification are SDS-gel electrophoresis, enzyme linked immunosorbent assays, high performance liquid chromatography and mass spectrometry-based assays. Although effective in correctly identifying the protein therapeutic, most of these techniques need extensive sample preparation and removal of samples from their containers. This step not only risks contamination but the sample taken for the identification is destroyed and cannot be re-used. Moreover, these techniques are often time consuming, sometimes taking several days to process. Here, we address these challenges by developing a rapid and non-destructive identification technique for monoclonal antibody-based drug substances. Raman spectroscopy in combination with chemometrics were used to identify three monoclonal antibody drug substances. This study explored the impact of laser exposure, time out of refrigerator and multiple freeze thaw cycles on the stability of monoclonal antibodies. and demonstrated the potential of using Raman spectroscopy for the identification of protein-based drug substances in the biopharmaceutical industry.


Assuntos
Anticorpos Monoclonais , Análise Espectral Raman , Análise Espectral Raman/métodos , Anticorpos Monoclonais/análise , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão
18.
Cryst Growth Des ; 23(12): 8953-8961, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38076529

RESUMO

This work presents two new solid forms, a polymorph and a solvate, of the antifungal active pharmaceutical ingredient griseofulvin (GSF). The novel forms were characterized by powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis, and their crystal structures were determined by single-crystal X-ray diffraction. The new polymorphic form (GSF Form VI) was obtained upon drying at room temperature the GSF-acetonitrile solvate. GSF Form VI is a relict structure related to reported solvates of GSF. Thermal stability studies show that Form VI is metastable and monotropically related to the stable GSF Form I. The new GSF-n-butyl acetate solvate was obtained by crystallization from an n-butyl acetate solution. The stoichiometry of the n-butyl acetate solvate is 1:0.5. The solvate loses the solvent from the crystal lattice at a temperature between 363.15 and 374.15 K.

19.
Drug Deliv Transl Res ; 13(9): 2407-2423, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36964439

RESUMO

Chronic wounds affect millions of people globally. This number is set to rise with the increasing incidence of antimicrobial-resistant bacterial infections, such as methicillin-resistant Staphylococcus aureus (MRSA), which impair the healing of chronic wounds. Lacticin 3147 is a two-peptide chain bacteriocin produced by Lactococcus lactis that is active against S. aureus including MRSA strains. Previously, poor physicochemical properties of the peptides were overcome by the encapsulation of lacticin 3147 into solid lipid nanoparticles. Here, a lacticin 3147 solid lipid nanoparticle gel is proposed as a topical treatment for S. aureus and MRSA wound infections. Initially, lacticin 3147's antimicrobial activity against S. aureus was determined before encapsulation into solid lipid nanoparticles. An optimised gel formulation with the desired physicochemical properties for topical application was developed, and the lacticin-loaded solid lipid nanoparticles and free lacticin 3147 aqueous solution were incorporated into separate gels. The release of lacticin 3147 from both the solid lipid nanoparticle and free lacticin gels was measured where the solid lipid nanoparticle gel exhibited increased activity for a longer period (11 days) compared to the free lacticin gel (9 days). Both gels displayed potent activity ex vivo against S. aureus-infected pig skin with significant bacterial eradication (> 75%) after 1 h. Thus, a long-acting potent lacticin 3147 solid lipid nanoparticle gel with the required physicochemical properties for topical delivery of lacticin 3147 to the skin for the potential treatment of S. aureus-infected chronic wounds was developed.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Animais , Suínos , Staphylococcus aureus , Hidrogéis , Peptídeos , Infecção dos Ferimentos/tratamento farmacológico , Antibacterianos
20.
Eur J Pharm Biopharm ; 171: 29-38, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34986413

RESUMO

In order to develop bacteriocins, like the lantibiotic nisin A, into effective alternatives to existing antibiotics, their biophysical and physicochemical properties must first be assessed, from solubility, to susceptibility and absorption. It has been well established that formulation strategies at early drug development stages can be crucial for successful outcomes during preclinical and clinical phases of development, particularly for molecules with challenging physicochemical properties. This work elucidates the physicochemical challenges of nisin A in terms of its susceptibility to digestive enzymes like pepsin, pancreatin and proteinase K and its poor solubility at physiological pHs. Low solution concentrations, below the minimum inhibitory concentration against Staphylococcus aureus, were obtained in phosphate buffered saline (PBS, pH 7.4) and in fasted state simulated intestinal fluid (FaSSIF, pH 6.5), while higher solubilities at more acidic pH's such as in a KCl/HCl buffer (pH 2) and in fasted state simulated gastric fluid (FaSSGF, pH 1.6) are observed. Tween® 80 (0.01% v/v) significantly increased the solution concentration of nisin A in PBS (pH 7.4, 24 hr). Pancreatin doubled nisin A's solution concentration at pH 7.4 (PBS) but reduced its' inhibitory activity to âˆ¼ 20%, and pepsin almost completely degraded nisin (after 24 hr), but retained activity at biologically relevant exposure times (∼15 min). Harnessing synergism between nisin A and either glycol chitosan or ε-poly lysine, combined with the solubilizing effect of Tween®, increased the antimicrobial activity of nisin A six fold in an in vitro oral administration model.


Assuntos
Antibacterianos/farmacologia , Biopolímeros , Nisina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Administração Oral , Antibacterianos/administração & dosagem , Antibacterianos/química , Sistemas de Liberação de Medicamentos , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Nisina/administração & dosagem , Nisina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA