Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 13: 46, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23506352

RESUMO

BACKGROUND: Constitutive expression of Vitis vinifera polygalacturonase-inhibiting protein 1 (Vvpgip1) has been shown to protect tobacco plants against Botrytis cinerea. Evidence points to additional roles for VvPGIP1, beyond the classical endopolygalacturonase (ePG) inhibition mechanism, in providing protection against fungal infection. Gene expression and biochemical datasets previously obtained, in the absence of infection, point to the cell wall, and particularly the xyloglucan component of transgenic VvPGIP1 lines as playing a role in fungal resistance. RESULTS: To elucidate the role of wall-associated processes in PGIP-derived resistance pre-infection, a wall profiling analysis, using high-throughput and fractionation techniques, was performed on healthy leaves from wild-type and previously characterized transgenic lines. The cell wall structure profile during development was found to be altered in the transgenic lines assessed versus the wild-type plants. Immunoprofiling revealed subtle changes in pectin and cellulose components and marked changes in the hemicellulose matrix, which showed reduced binding in transgenic leaves of VvPGIP1 expressing plants. Using an enzymatic xyloglucan oligosaccharide fingerprinting technique optimized for tobacco arabinoxyloglucans, we showed that polysaccharides of the XEG-soluble domain were modified in relative abundance for certain oligosaccharide components, although no differences in ion profiles were evident between wild-type and transgenic plants. These changes did not significantly influence plant morphology or normal growth processes compared to wild-type lines. CONCLUSIONS: VvPGIP1 overexpression therefore results in cell wall remodeling and reorganization of the cellulose-xyloglucan network in tobacco in advance of potential infection.


Assuntos
Glucanos/metabolismo , Nicotiana/metabolismo , Nicotiana/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Vitis/metabolismo , Xilanos/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Vitis/genética
2.
Carbohydr Polym ; 99: 190-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274496

RESUMO

Vitis species include Vitis vinifera, the domesticated grapevine, used for wine and grape agricultural production and considered the world's most important fruit crop. A cell wall preparation, isolated from fully expanded photosynthetically active leaves, was fractionated via chemical and enzymatic reagents; and the various extracts obtained were assayed using high-throughput cell wall profiling tools according to a previously optimized and validated workflow. The bulk of the homogalacturonan-rich pectin present was efficiently extracted using CDTA treatment, whereas over half of the grapevine leaf cell wall consisted of vascular veins, comprised of xylans and cellulose. The main hemicellulose component was found to be xyloglucan and an enzymatic oligosaccharide fingerprinting approach was used to analyze the grapevine leaf xyloglucan fraction. When Paenibacillus sp. xyloglucanase was applied the main subunits released were XXFG and XLFG; whereas the less-specific Trichoderma reesei EGII was also able to release the XXXG motif as well as other oligomers likely of mannan and xylan origin. This latter enzyme would thus be useful to screen for xyloglucan, xylan and mannan-linked cell wall alterations in laboratory and field grapevine populations. This methodology is well-suited for high-throughput cell wall profiling of grapevine mutant and transgenic plants for investigating the range of biological processes, specifically plant disease studies and plant-pathogen interactions, where the cell wall plays a crucial role.


Assuntos
Parede Celular/química , Folhas de Planta/química , Vitis/química , Proteínas de Bactérias/química , Celulose/química , Celulose/isolamento & purificação , Fracionamento Químico , Ácido Edético/análogos & derivados , Ácido Edético/química , Proteínas Fúngicas/química , Glucanos/química , Glucanos/isolamento & purificação , Glicosídeo Hidrolases/química , Ensaios de Triagem em Larga Escala , Mananas/química , Mananas/isolamento & purificação , Paenibacillus/química , Paenibacillus/enzimologia , Pectinas/química , Pectinas/isolamento & purificação , Extratos Vegetais/química , Trichoderma/química , Trichoderma/enzimologia , Xilanos/química , Xilanos/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA