Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 806
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 28(17): e70065, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233332

RESUMO

Glioblastoma multiforme (GBM) is a malignant tumour with a poor prognosis. Therefore, potential treatment strategies and novel therapeutic targets have gained increased attention. Our data showed that the ethanol extract of Vanilla planifolia stem (VAS) significantly decreased the viability and the colony formation of GBM cells. Moreover, VAS induced the cleavage of MAP1LC3, a marker of autophagy. Further RNA-seq and bioinformatic analysis revealed 4248 differentially expressed genes (DEGs) between VAS-treated GBM cells and the control cells. Protein-protein interactions between DEGs with fold changes less than -3 and more than 5 were further analysed, and we found that 16 and 9 hub DEGs, respectively, were correlated with other DEGs. Further qPCR experiments confirmed that 14 hub DEGs was significantly downregulated and 9 hub DEGs was significantly upregulated. In addition, another significantly downregulated DEG, p21-activated kinase 6 (PAK6), was correlated with the overall survival of GBM patients. Further validation experiments confirmed that VAS significantly reduced the mRNA and protein expression of PAK6, which led to the abolition of cell viability and colony formation. These findings demonstrated that VAS reduced cell viability, suppressed colony formation and induced autophagy and revealed PAK6 and other DEGs as potential therapeutic targets for GBM treatment.


Assuntos
Autofagia , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Extratos Vegetais , Quinases Ativadas por p21 , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Extratos Vegetais/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Autofagia/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Caules de Planta/química , Etanol , Proliferação de Células/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Morte Celular/efeitos dos fármacos
2.
Antimicrob Agents Chemother ; 68(10): e0095924, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39171918

RESUMO

Helicobacter pylori (H. pylori) is closely associated with the diseases such as gastric sinusitis, peptic ulcers, and gastric adenocarcinoma. Its drug resistance is very severe, and new antibiotics are urgently needed. Nine comfrey compounds were screened by antimicrobial susceptibility testing, among which deoxyshikonin had the best inhibitory effect, with a minimum inhibitory concentration (MIC) of 0.5-1 µg/mL. In addition, deoxyshikonin also has a good antibacterial effect in an acidic environment, it is highly safe, and H. pylori does not readily develop drug resistance. Through in vivo experiments, it was proven that deoxyshikonin (7 mg/kg) had a beneficial therapeutic effect on acute gastritis in mice infected with the multidrug-resistant H. pylori BS001 strain. After treatment with desoxyshikonin, colonization of H. pylori in the gastric mucosa of mice was significantly reduced, gastric mucosal damage was repaired, inflammatory factors were reduced, and the treatment effect was better than that of standard triple therapy. Therefore, deoxyshikonin is a promising lead drug to solve the difficulty of drug resistance in H. pylori, and its antibacterial mechanism may be to destroy the biofilm and cause an oxidation reaction.


Assuntos
Antibacterianos , Infecções por Helicobacter , Helicobacter pylori , Testes de Sensibilidade Microbiana , Helicobacter pylori/efeitos dos fármacos , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Gastrite/tratamento farmacológico , Gastrite/microbiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Antraquinonas/farmacologia , Masculino , Biofilmes/efeitos dos fármacos
3.
Mol Med ; 30(1): 27, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378457

RESUMO

BACKGROUND: Isoorientin (ISO) is a glycosylated flavonoid with antitumor, anti-inflammatory, and antioxidant properties. However, its effects on bone metabolism remain largely unknown. METHODS: In this study, we aimed to investigate the effects of ISO on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation in vitro and bone loss in post-ovariectomy (OVX) rats, as well as to elucidate the underlying mechanism. First, network pharmacology analysis indicated that MAPK1 and AKT1 may be potential therapeutic targets of ISO and that ISO has potential regulatory effects on the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways, as well as oxidative stress. ISO was added to RAW264.7 cells stimulated by RANKL, and its effects on osteoclast differentiation were evaluated using tartrate-resistant acid phosphatase (TRAP) staining, TRAP activity measurement, and F-actin ring analysis. Reactive oxygen species (ROS) production in osteoclasts was detected using a ROS assay kit. The effects of ISO on RANKL-triggered molecular cascade response were further investigated by Western blotting, quantitative real-time polymerase chain reaction, and immunofluorescence staining. In addition, the therapeutic effects of ISO were evaluated in vivo. RESULTS: ISO inhibited osteoclastogenesis in a time- and concentration-dependent manner. Mechanistically, ISO downregulated the expression of the main transcription factor for osteoclast differentiation by inhibiting MAPK and PI3K/AKT1 signaling pathways. Moreover, ISO exhibited protective effects in OVX-induced bone loss rats. This was consistent with the results derived from network pharmacology. CONCLUSION: Our findings suggest a potential therapeutic utility of ISO in the management of osteoclast-associated bone diseases, including osteoporosis.


Assuntos
Reabsorção Óssea , Luteolina , Osteoporose , Feminino , Ratos , Animais , Reabsorção Óssea/patologia , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases , Farmacologia em Rede , Diferenciação Celular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Osteoporose/tratamento farmacológico , Fatores de Transcrição NFATC/metabolismo
4.
Biochem Biophys Res Commun ; 692: 149360, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38081108

RESUMO

BACKGROUND: Myocardial infarction (MI) dramatically changes the mechanical stress, which is intensified by the fibrotic remodeling. Integrins, especially the αV subunit, mediate mechanical signal and mechanoparacrine of transforming growth factor ß1 (TGF-ß1) in various organ fibrosis by activating CFs into myofibroblasts (MFBs). We investigated a possible role of integrin αV mediated mechanoparacrine of TGF-ß1 in MFBs activation for fibrous reparation in mice with MI. METHODS: Heart samples from MI, sham, or MI plus cilengitide (14 mg/kg, specific integrin αV inhibitor) treated mice, underwent functional and morphological assessments by echocardiography, and histochemistry on 7, 14 and 28 days post-surgery. The mechanical and ultrastructural changes of the fibrous scar were further evaluated by atomic mechanics microscope (AFM), immunofluorescence, second harmonic generation (SHG) imaging, polarized light and scanning electron microscope, respectively. Hydroxyproline assay was used for total collagen content, and western blot for protein expression profile examination. Fibroblast bioactivities, including cell shape, number, Smad2/3 signal and expression of extracellular matrix (ECM) related proteins, were further evaluated by microscopic observation and immunofluorescence in polyacrylamide (PA) hydrogel with adjustable stiffness, which was re-explored in fibroblast cultured on stiff matrix after silencing of integrin αV. The content of total and free TGF-ß1 was tested by enzyme-linked immunosorbent assay (ELISA) in both infarcted tissue and cell samples. RESULT: Increased stiffness with heterogeneity synchronized with integrin αV and alpha smooth muscle actin (α-SMA) positive MFBs accumulation in those less mature fibrous areas. Cilengitide abruptly reduced collagen content and disrupted collagen alignment, which also decreased TGF-ß1 bioavailability, Smad2/3 phosphorylation, and α-SMA expression in the fibrous area. Accordingly, fibroblast on stiff but not soft matrix exhibited obvious MFB phenotype, as evidenced by enlarged cell, hyperproliferation, well-developed α-SMA fibers, and elevated ECM related proteins, while silencing of integrin αV almost abolished this switch via attenuating paracrine of TGF-ß1 and nuclear translocation of Smad2/3. CONCLUSION: This study illustrated that increased tissue stiffness activates CFs into MFBs by integrin αV mediated mechanoparacrine of TGF-ß1, especially in immature scar area, which ultimately promotes fibrous scar maturation.


Assuntos
Infarto do Miocárdio , Miofibroblastos , Animais , Camundongos , Actinas/metabolismo , Cicatriz/metabolismo , Colágeno/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose , Integrina alfaV/metabolismo , Infarto do Miocárdio/patologia , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
5.
Insect Mol Biol ; 33(3): 259-269, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38335442

RESUMO

The RNA interference pathway mediated by microRNAs (miRNAs) is one of the methods to defend against viruses in insects. Recent studies showed that miRNAs participate in viral infection by binding to target genes to regulate their expression. Here, we found that the Bombyx mori miRNA, miR-6498-5p was down-regulated, whereas its predicted target gene pyridoxal phosphate phosphatase PHOSPHO2 (BmPLPP2) was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Both in vivo and in vitro experiments showed that miR-6498-5p targets BmPLPP2 and suppresses its expression. Furthermore, we found miR-6498-5p inhibits BmNPV genomic DNA (gDNA) replication, whereas BmPLPP2 promotes BmNPV gDNA replication. As a pyridoxal phosphate (PLP) phosphatase (PLPP), the overexpression of BmPLPP2 results in a reduction of PLP content, whereas the knockdown of BmPLPP2 leads to an increase in PLP content. In addition, exogenous PLP suppresses the replication of BmNPV gDNA; in contrast, the PLP inhibitor 4-deoxypyridoxine facilitates BmNPV gDNA replication. Taken together, we concluded that miR-6498-5p has a potential anti-BmNPV role by down-regulating BmPLPP2 to modulate PLP content, but BmNPV induces miR-6498-5p down-regulation to promote its proliferation. Our findings provide valuable insights into the role of host miRNA in B. mori-BmNPV interaction. Furthermore, the identification of the antiviral molecule PLP offers a novel perspective on strategies for preventing and managing viral infection in sericulture.


Assuntos
Bombyx , MicroRNAs , Nucleopoliedrovírus , Animais , Bombyx/virologia , Bombyx/genética , Bombyx/metabolismo , Regulação para Baixo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/metabolismo , Larva/virologia , Larva/genética , Larva/crescimento & desenvolvimento , MicroRNAs/metabolismo , MicroRNAs/genética , Nucleopoliedrovírus/fisiologia , Fosfato de Piridoxal/metabolismo , Replicação Viral
6.
Toxicol Appl Pharmacol ; 492: 117113, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39343043

RESUMO

Cardiac ischaemia/reperfusion (I/R) impairs mitochondrial function, resulting in excessive oxidative stress and cardiomyocyte ferroptosis and death. Nuclear factor E2-related factor 2 (Nrf2) is a key regulator of redox homeostasis and has cardioprotective effects against various stresses. Here, we tested whether CBR-470-1, a noncovalent Nrf2 activator, can protect against cardiomyocyte death caused by I/R stress. Compared with vehicle treatment, the administration of CBR-470-1 (2 mg/kg) to mice significantly increased Nrf2 protein levels and ameliorated the infarct size, the I/R-induced decrease in cardiac contractile performance, and the I/R-induced increases in cell apoptosis, ROS levels, and inflammation. Consistently, the beneficial effects of CBR-470-1 on cardiomyocytes were verified in a hypoxia/reoxygenation (H/R) model in vitro, but this cardioprotection was dramatically attenuated by the GPX4 inhibitor RSL3. Mechanistically, CBR-470-1 upregulated Nrf2 expression, which increased the expression levels of antioxidant enzymes (NQO1, SOD1, Prdx1, and Gclc) and antiferroptotic proteins (SLC7A11 and GPX4) and downregulated the protein expression of p53 and Nlrp3, leading to the inhibition of ROS production and inflammation and subsequent cardiomyocyte death (apoptosis, ferroptosis and pyroptosis). In summary, CBR-470-1 prevented I/R-mediated cardiac injury possibly through inhibiting cardiomyocyte apoptosis, ferroptosis and pyroptosis via Nrf2-mediated inhibition of p53 and Nlrp3 and activation of the SLC7A11/GPX4 pathway. Our data also highlight that CBR-470-1 may serve as a valuable agent for treating ischaemic heart disease.

7.
Arch Biochem Biophys ; 752: 109855, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38097099

RESUMO

Sepsis-induced cardiomyopathy (SIC), caused by a dysregulated host response to infection, is a major contributor to high mortality. Angiotensin-converting enzyme 2 (ACE2), a crucial component of the renin-angiotensin system (RAS), has protective effects against several cardiovascular diseases, such as myocardial infarction and heart failure. However, the role of ACE2 in the pathogenesis of SIC and underlying mechanisms remain unknown. The present study was designed to examine the effects of ACE2 activation or inhibition on SIC in C57BL/6 mice. The ACE2 activator diminazene aceturate (DIZE) and ACE2 inhibitor MLN-4760 were applied for treatment. Myocardial function, inflammatory response, oxidative stress, apoptosis and mitochondrial biogenesis were investigated. Major assays were echocardiography, H&E staining, immunofluorescence staining, DHE staining, TUNEL staining, Western blot, qPCR analysis, ELISA and corresponding kits. We confirmed that ACE2 was markedly downregulated in septic heart tissues. Pharmacological activation of ACE2 by DIZE ameliorated cecal ligation puncture (CLP)-induced mortality, cardiac dysfunction, inflammatory response, oxidative stress and the cardiomyocyte apoptosis by promoting MasR-Sirt1-mediated mitochondrial biogenesis. In contrast, SIC was aggravated via inhibiting MasR-Sirt1-mediated mitochondrial biogenesis by the use of ACE2 inhibitor MLN-4760. Consequently, activation of ACE2 may protect against SIC by promoting MasR-Sirt1-mediated mitochondrial biogenesis.


Assuntos
Cardiomiopatias , Sepse , Animais , Camundongos , Enzima de Conversão de Angiotensina 2 , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/etiologia , Camundongos Endogâmicos C57BL , Biogênese de Organelas , Peptidil Dipeptidase A , Sepse/complicações , Sepse/tratamento farmacológico , Sirtuína 1
8.
Psychol Med ; : 1-9, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825858

RESUMO

BACKGROUND: Persistent cognitive deficits and functional impairments are associated with bipolar disorder (BD), even during the euthymic phase. The dysfunction of default mode network (DMN) is critical for self-referential and emotional mental processes and is implicated in BD. The current study aims to explore the balance of excitatory and inhibitory neurotransmitters, i.e. glutamate and γ-aminobutyric acid (GABA), in hubs of the DMN during the euthymic patients with BD (euBD). METHOD: Thirty-four euBD and 55 healthy controls (HC) were recruited to the study. Using proton magnetic resonance spectroscopy (1H-MRS), glutamate (with PRESS sequence) and GABA levels (with MEGAPRESS sequence) were measured in the medial prefrontal cortex/anterior cingulate cortex (mPFC/ACC) and the posterior cingulate gyrus (PCC). Measured concentrations of excitatory glutamate/glutamine (Glx) and inhibitory GABA were used to calculate the excitatory/inhibitory (E/I) ratio. Executive and attentional functions were respectively assessed using the Wisconsin card-sorting test and continuous performance test. RESULTS: euBD performed worse on attentional function than controls (p = 0.001). Compared to controls, euBD had higher E/I ratios in the PCC (p = 0.023), mainly driven by a higher Glx level in the PCC of euBD (p = 0.002). Only in the BD group, a marginally significant negative association between the mPFC E/I ratio (Glx/GABA) and executive function was observed (p = 0.068). CONCLUSIONS: Disturbed E/I balance, particularly elevated Glx/GABA ratio in PCC is observed in euBD. The E/I balance in hubs of DMN may serve as potential biomarkers for euBD, which may also contribute to their poorer executive function.

9.
Pharmacol Res ; 204: 107215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38744399

RESUMO

The ubiquitinproteasome system (UPS) is the main mechanism responsible for the intracellular degradation of misfolded or damaged proteins. Under inflammatory conditions, the immunoproteasome, an isoform of the proteasome, can be induced, enhancing the antigen-presenting function of the UPS. Furthermore, the immunoproteasome also serves nonimmune functions, such as maintaining protein homeostasis and regulating signalling pathways, and is involved in the pathophysiological processes of various cardiovascular diseases (CVDs). This review aims to provide a comprehensive summary of the current research on the involvement of the immunoproteasome in cardiovascular diseases, with the ultimate goal of identifying novel strategies for the treatment of these conditions.


Assuntos
Doenças Cardiovasculares , Complexo de Endopeptidases do Proteassoma , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/imunologia , Doenças Cardiovasculares/imunologia , Doenças Cardiovasculares/metabolismo , Animais , Ubiquitina/metabolismo , Ubiquitina/imunologia , Transdução de Sinais
10.
Cell Biol Toxicol ; 40(1): 82, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320524

RESUMO

Angiotensin-converting enzyme 2 (ACE2), a crucial element of the renin-angiotensin system (RAS), metabolizes angiotensin II into Ang (1-7), which then combines with the Mas receptor (MasR) to fulfill its protective role in various diseases. Nevertheless, the involvement of ACE2 in sepsis-induced cardiomyopathy (SIC) is still unexplored. In this study, our results revealed that CLP surgery dramatically impaired cardiac function accompanied with disruption of the balance between ACE2-Ang (1-7) and ACE-Ang II axis in septic heart tissues. Moreover, ACE2 knockin markedly alleviated sepsis induced RAS disorder, cardiac dysfunction and improved survival rate in mice, while ACE2 knockout significantly exacerbates these outcomes. Adoptive transfer of bone marrow cells and in vitro experiments showed the positive role of myeloid ACE2 by mitigating oxidative stress, inflammatory response, macrophage polarization and cardiomyocyte apoptosis by blocking NF-κB and STAT1 signals. However, the beneficial impacts were nullified by MasR antagonist A779. Collectively, these findings showed that ACE2 alleviated SIC by inhibiting M1 macrophage via activating the Ang (1-7)-MasR axis, highlight that ACE2 might be a promising target for the management of sepsis and SIC patients.


Assuntos
Enzima de Conversão de Angiotensina 2 , Cardiomiopatias , Macrófagos , NF-kappa B , Fator de Transcrição STAT1 , Sepse , Transdução de Sinais , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Sepse/complicações , Sepse/metabolismo , NF-kappa B/metabolismo , Cardiomiopatias/metabolismo , Camundongos , Fator de Transcrição STAT1/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Apoptose/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Estresse Oxidativo/efeitos dos fármacos , Angiotensina I/metabolismo , Angiotensina I/farmacologia , Proto-Oncogene Mas , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/genética
11.
BMC Infect Dis ; 24(1): 793, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112975

RESUMO

BACKGROUND: Sepsis is a life-threatening condition that is characterized by multiorgan dysfunction and caused by dysregulated cytokine networks, which are closely associated with sepsis progression and outcomes. However, currently available treatment strategies that target cytokines have failed. Thus, this study aimed to investigate the interplay between genetically predicted circulating concentrations of cytokines and the outcomes of sepsis and to identify potential targets for sepsis treatment. METHODS: Data related to 35 circulating cytokines in 31,112 individuals (including 11,643 patients with sepsis) were included in genome-wide association studies (GWASs) from the UK Biobank and FinnGen consortia. A bidirectional two-sample Mendelian randomization (MR) analysis was performed using single nucleotide polymorphisms (SNPs) to evaluate the causal effects of circulating cytokines on sepsis outcomes and other cytokines. RESULTS: A total of 35 inflammatory cytokine genes were identified in the GWASs, and 11 cytokines, including Interleukin-1 receptor antagonist (IL-1ra), macrophage inflammatory protein 1 (MIP1α), IL-16, et al., were associated with sepsis outcome pairs according to the selection criteria of the cis-pQTL instrument. Multiple MR methods verified that genetically predicted high circulating levels of IL-1ra or MIP1α were negatively correlated with genetic susceptibility to risk of sepsis, including sepsis (28-day mortality), septicaemia, streptococcal and pneumonia-derived septicaemia (P ≤ 0.01). Furthermore, genetic susceptibility of sepsis outcomes except sepsis (28-day mortality) markedly associated with the circulating levels of five cytokines, including active plasminogen activator inhibitor (PAI), interleukin 7 (IL-7), tumour necrosis factor alpha (TNF-α), beta nerve growth factor (NGF-ß), hepatic growth factor (HGF) (P < 0.05). Finally, we observed that the causal interaction network between MIP1α or IL-1ra and other cytokines (P < 0.05). CONCLUSIONS: This comprehensive MR analysis provides insights into the potential causal mechanisms that link key cytokines, particularly MIP1α, with risk of sepsis, and the findings suggest that targeting MIP1α may be a potential strategy for preventing sepsis.


Assuntos
Citocinas , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Sepse , Humanos , Sepse/genética , Citocinas/sangue , Citocinas/genética , Masculino , Feminino , Predisposição Genética para Doença , Pessoa de Meia-Idade
12.
Cell Mol Life Sci ; 80(8): 231, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501008

RESUMO

Mitochondrial dynamics are critical for maintaining mitochondrial morphology and function during cardiac ischemia and reperfusion (I/R). The immunoproteasome complex is an inducible isoform of the proteasome that plays a key role in modulating inflammation and some cardiovascular diseases, but the importance of immunoproteasome catalytic subunit ß2i (also known as LMP10 or MECL1) in regulating mitochondrial dynamics and cardiac I/R injury is largely unknown. Here, using ß2i-knockout (KO) mice and rAAV9-ß2i-injected mice, we discovered that ß2i expression and its trypsin-like activity were significantly attenuated in the mouse I/R myocardium and in patients with myocardial infarction (MI). Moreover, ß2i-KO mice exhibited greatly enhanced I/R-mediated cardiac dysfunction, infarct size, myocyte apoptosis and oxidative stress accompanied by excessive mitochondrial fission due to Mfn1/2 and Drp1 imbalance. Conversely, cardiac overexpression of ß2i in mice injected with recombinant adeno-associated virus 9 (rAAV9)-ß2i ameliorated cardiac I/R injury. Mechanistically, I/R injury reduced ß2i expression and activity, which increased the expression of the E3 ligase Parkin protein and promoted the degradation of mitofusin 1/2 (Mfn1/2), leading to excessive mitochondrial fission. In conclusion, our data suggest for the first time that ß2i exerts a protective role against cardiac I/R injury and that increasing ß2i expression may be a new therapeutic option for cardiac ischemic disease in clinical practice. Graphical abstract showing how the immunoproteasome subunit ß2i ameliorates myocardial I/R injury by regulating Parkin-Mfn1/2-mediated mitochondrial fusion.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Dinâmica Mitocondrial/fisiologia , Coração , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Apoptose , Camundongos Knockout , Hidrolases/metabolismo , Miócitos Cardíacos/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo
13.
Immun Ageing ; 21(1): 10, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279177

RESUMO

BACKGROUND: Age-related changes in the ovarian microenvironment are linked to impaired fertility in women. Macrophages play important roles in ovarian tissue homeostasis and immune surveillance. However, the impact of aging on ovarian macrophage function and ovarian homeostasis remains poorly understood. METHODS: Senescence-associated beta-galactosidase staining, immunohistochemistry, and TUNEL staining were used to assess senescence and apoptosis, respectively. Flow cytometry was employed to evaluate mitochondrial membrane potential (MMP) and apoptosis in granulosa cells lines (KGN), and macrophages phagocytosis. After a 2-month treatment with low molecular weight Chitosan (LMWC), ovarian tissues from mice were collected for comprehensive analysis. RESULTS: Compared with the liver and uterus, the ovary displayed accelerated aging in an age-dependent manner, which was accompanied by elevated levels of inflammatory factors and apoptotic cells, and impaired macrophage phagocytic activity. The aged KGN cells exhibited elevated reactive oxygen species (ROS) and apoptotic levels alongside decreased MMP. H2O2-induced aging macrophages showed reduced phagocytosis function. Moreover, there were excessive aging macrophages with impaired phagocytosis in the follicular fluid of patients with diminished ovarian reserve (DOR). Notably, LMWC administration alleviated ovarian aging by enhancing macrophage phagocytosis and promoting tissue homeostasis. CONCLUSIONS: Aging ovarian is characterized by an accumulation of aging and apoptotic granulosa cells, an inflammatory response and macrophage phagocytosis dysfunction. In turn, impaired phagocytosis of macrophage contributes to insufficient clearance of aging and apoptotic granulosa cells and the increased risk of DOR. Additionally, LMWC emerges as a potential therapeutic strategy for age-related ovarian dysfunction.

14.
J Invertebr Pathol ; 207: 108188, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39245295

RESUMO

A subfamily of conserved proteins called serpins plays crucial roles in various physiological functions, particularly in the activation pathway of the serine protease cascade, an essential component of insect innate immunity. Here, we found Bombyx mori serpin 3 (BmSerpin3) was most highly expressed in the fat body, and was up-regulated after exposure to bacteria, fungus and virus. Further, the expression of BmSerpin3 in the hemocytes, fat body, midgut of silkworm larvae, and BmN cells was up-regulated upon Bombyx mori nucleopolyhedrovirus (BmNPV) infection. Through Bac-to-Bac expression system, we obtained the active protein of BmSerpin3, and the enzyme activity assay showed that BmSerpin3 significantly inhibited the activity of both subtilisin and trypsin. In addition, BmSerpin3 could inhibit the activation of prophenoloxidase (PPO) in larvae. The knockdown of BmSerpin3 showed increased phenoloxidase (PO) activity compared to control after BmNPV infection. Ultimately, we confirmed that BmSerpin3 interacts with B. mori Serine Protease 7 (BmSP7). Hence, we hypothesize that BmSerpin3 is involved in innate immunity by interacting with BmSP7 to regulate the PPO activation cascade. Taken together, these results showed that BmSerpin3 play a role in silkworm innate immunity and lay a foundation for studying its functions.

15.
J Integr Neurosci ; 23(2): 38, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38419449

RESUMO

Perioperative neurocognitive disorders (PND) are a cognitive impairment that occurs after anesthesia, especially in elderly patients and significantly affects their quality of life. The hippocampus, as a critical region for cognitive function and an important location in PND research, has recently attracted increasing attention. However, in the hippocampus the impact of anesthesia and its underlying mechanisms remain unclear. This review focuses on investigation of the effects of anesthesia on the hippocampal dopamine (DA) system and explores its potential association with PND. Through comprehensive review of existing studies, it was found that anesthesia affects the hippocampus through various pathways involved in metabolism, synaptic plasticity and oxygenation. Anesthesia may also influence the DA neurotransmitter system in the brain which plays a role in emotions, rewards, learning and memory functions. Specifically, anesthesia may participate in the pathogenesis of PND by affecting the DA system within the hippocampus. Future studies should explore the molecular mechanisms of these effects through techniques such as neuroimaging to study real-time effects to improve animal models to better simulate clinical observations. For clinical application, it is recommended that physicians exercise caution when selecting and managing anesthetic drugs by adopting comprehensive cognitive assessment methods to reduce post-anesthesia cognitive risk. Overall, this review provides a better understanding of the relationship between the hippocampal DA system and perioperative neurocognitive function and provides valuable guidance for prevention and treatment strategies for PND.


Assuntos
Disfunção Cognitiva , Dopamina , Animais , Humanos , Idoso , Dopamina/metabolismo , Dopamina/farmacologia , Qualidade de Vida , Transtornos Neurocognitivos/metabolismo , Transtornos Neurocognitivos/patologia , Hipocampo/metabolismo
16.
Medicina (Kaunas) ; 60(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39336465

RESUMO

Background and Objectives: The use of a bipolar resectoscope has become popular due to the lower risk of hyponatremia. However, gynecologists might overlook the risk of water intoxication. Water intoxication is associated with the infusion of distending fluid. We were interested in the prediction of the infused distending fluid volume in the era of bipolar hysteroscopy. Thus, the aim of this study was to identify the predictors of the infused distending fluid volume for hysteroscopic myomectomy. Materials and Methods: All consecutive women who underwent monopolar (n = 45) or bipolar (n = 137) hysteroscopic myomectomy were reviewed. Results: Myoma diameter (cm, coefficient = 680 mL, 95% confidence interval (CI) = 334-1025 mL, p <0.001) and bipolar hysteroscopy (coefficient = 1629 mL, 95% CI = 507-2752 mL, p = 0.005) were independent predictors of infused distending fluid volume. A myoma diameter ≥4.0 cm was the optimal cutoff value to predict the presence of >5000 mL of infused distending fluid. One woman in the bipolar group developed life-threatening water intoxication. Conclusions: Myoma diameter is associated with an increase in infused distending fluid volume, especially for myomas ≥4 cm. Meticulous monitoring of the infused distension fluid volume is still crucial to avoid fluid overload during bipolar hysteroscopic myomectomy.


Assuntos
Histeroscopia , Miomectomia Uterina , Humanos , Feminino , Miomectomia Uterina/métodos , Miomectomia Uterina/efeitos adversos , Adulto , Histeroscopia/métodos , Pessoa de Meia-Idade , Neoplasias Uterinas/cirurgia , Leiomioma/cirurgia , Intoxicação por Água , Estudos Retrospectivos
17.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1260-1265, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-38621973

RESUMO

A variety of compounds in Artemisia annua were simultaneously determined to evaluate the quality of A. annua from multiple perspectives. A method based on ultra-high performance liquid chromatography-triple quadrupole tandem mass spectrometry(UPLC-QQQ-MS/MS) was established for the simultaneous determination of seven compounds: amorpha-4,11-diene, artemisinic aldehyde, dihydroartemisinic acid, artemisinic acid, artemisinin B, artemisitene, and artemisinin, in A. annua. The content of the seven compounds in different tissues(roots, stems, leaves, and lateral branches) of A. annua were compared. The roots, stems, leaves, and lateral branches of four-month-old A. annua were collected and the content of seven artemisinin-related compounds in different tissues was determined. A multi-reaction monitoring(MRM) acquisition mode of UPLC-QQQ-MS/MS was used, with a positive ion mode of atmospheric pressure chemical ion source(APCI). Chromatographic separation was achieved on an Eclipse Plus RRHD C_(18) column(2.1 mm×50 mm, 1.8 µm). The gradient elution was performed with the mobile phase consisted of formic acid(0.1%)-ammonium formate(5 mmol·L~(-1))(A) and the methanol(B) gradient program of 0-8 min, 55%-100% B, 8-11 min, 100% B, and equilibrium for 3 min, the flow rate of 0.6 mL·min~(-1), the column temperature of 40 ℃, the injection volume of 5 µL, and the detection time of 8 min. Through methodological investigation, a method based on UPLC-QQQ-MS/MS was established for the simultaneous quantitative determination of seven representative compounds involved in the biosynthesis of artemisinin. The content of artemisinin in A. annua was higher than that of artemisinin B, and the content of artemisinin and dihydroartemisinic acid were high in all the tissues of A. annua. The content of the seven compounds varied considerably in different tissues, with the highest levels in the leaves and neither artemisinene nor artemisinic aldehyde was detected in the roots. In this study, a quantitative method based on UPLC-QQQ-MS/MS for the simultaneous determination of seven representative compounds involved in the biosynthesis of artemisinin was established, which was accurate, sensitive, and highly efficient, and can be used for determining the content of artemisinin-related compounds in A. annua, breeding new varieties, and controlling the quality of Chinese medicinal materials.


Assuntos
Artemisia annua , Artemisininas , Lactonas , Artemisia annua/química , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Melhoramento Vegetal , Artemisininas/análise , Aldeídos
18.
Lab Invest ; 103(1): 100004, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748188

RESUMO

Atrial fibrillation (AF) is a main risk factor for cerebrovascular diseases but lacks precision therapy. Adipose triglyceride lipase (ATGL) is a key enzyme involved in the intracellular degradation of triacylglycerol and plays an important role in lipid and energy metabolism. However, the role of ATGL in the regulation of AF remains unclear. In this study, AF was induced by infusion of angiotensin II (Ang II, 2000 ng/kg/min) for 3 weeks in male ATGL knockout (KO) mice and age-matched C57BL/6 wild-type mice. The atrial volume was measured by echocardiography. Atrial fibrosis, inflammatory cells, and superoxide production were detected by histologic examinations. The results showed that ATGL expression was significantly downregulated in the atrial tissue of the Ang II-infused mice. Moreover, Ang II-induced increase in the inducibility and duration of AF, atrial dilation, fibrosis, inflammation, and oxidative stress in wild-type mice were markedly accelerated in ATGL KO mice; however, these effects were dramatically reversed in the ATGL KO mice administered with peroxisome proliferator-activated receptor (PPAR)-α agonist clofibric acid. Mechanistically, Ang II downregulated ATGL expression and inhibited PPAR-α activity, activated multiple signaling pathways (inhibiting kappa B kinase α/ß-nuclear factor-κB, nicotinamide adenine dinucleotide phosphate oxidase, and transforming growth factor-ß1/SMAD2/3) and reducing Kv1.5, Cx40, and Cx43 expression, thereby contributing to atrial structural and electrical remodeling and subsequent AF. In summary, our results indicate that ATGL KO enhances AF inducibility, possibly through inhibiting PPAR-α activation and suggest that activating ATGL might be a new therapeutic option for treating hypertensive AF.


Assuntos
Aciltransferases , Fibrilação Atrial , Lipase , Animais , Masculino , Camundongos , Angiotensina II/metabolismo , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrose , Lipase/genética , Lipase/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/genética , PPAR alfa/agonistas , PPAR alfa/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
19.
Virol J ; 20(1): 112, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37268999

RESUMO

BACKGROUND/AIMS: Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the best policies to control COVID-19 pandemic. The serological response to COVID-19 vaccination in Taiwanese patients with different comorbidities is elusive. METHODS: Uninfected subjects who received 3 doses of mRNA vaccines (BNT162b2 [Pfizer-BioNTech, BNT] and mRNA-1273 [Moderna]), viral vector-based vaccines (ChAdOx1-S (AZD1222, AZ) or protein subunit vaccines (Medigen COVID-19 vaccine) were prospectively enrolled. The SARS-CoV-2-IgG spike antibody level was determined within three months after the 3rd dose of vaccination. The Charlson Comorbidity Index (CCI) was applied to determine the association between vaccine titers and underlying comorbidities. RESULTS: A total of 824 subjects were enrolled in the current study. The proportions of CCI scores of 0-1, 2-3 and > 4 were 52.8% (n = 435), 31.3% (n = 258) and 15.9% (n = 131), respectively. The most commonly used vaccination combination was AZ-AZ-Moderna (39.2%), followed by Moderna-Moderna-Moderna (27.8%). The mean vaccination titer was 3.11 log BAU/mL after a median of 48 days after the 3rd dose. Factors associated with potentially effective neutralization capacity (IgG level ≥ 4160 AU/mL) included age ≥ 60 years (odds ratio [OR]/95% confidence interval [CI]: 0.50/0.34-0.72, P < 0.001), female sex (OR/CI: 1.85/1.30-2.63, P = 0.001), Moderna-Moderna-based vaccination (compared to AZ-AZ-based vaccination, OR/CI: 6.49/3.90-10.83, P < 0.001), BNT-BNT-based vaccination (compared to AZ-AZ-based vaccination, OR/CI: 7.91/1.82-34.3, P = 0.006) and a CCI score ≥ 4 (OR/CI: 0.53/0.34-0.82, P = 0.004). There was a decreasing trend in antibody titers with increasing CCI scores (trend P < 0.001). Linear regression analysis revealed that higher CCI scores (ß: - 0.083; 95% CI: - 0.094-0.011, P = 0.014) independently correlated with low IgG spike antibody levels. CONCLUSIONS: Subjects with more comorbidities had a poor serological response to 3 doses of COVID-19 vaccination.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Feminino , Pessoa de Meia-Idade , Vacina BNT162 , ChAdOx1 nCoV-19 , Pandemias , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Antivirais , Comorbidade , Imunoglobulina G
20.
Neuropsychobiology ; 82(3): 131-149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075733

RESUMO

INTRODUCTION: Although abundant research delving into the acute exercise-induced modulation of cognitive performance and the P300-ERP component has been conducted, there is a lack of consensus regarding whether or not this type of intervention has a beneficial effect on cognition and how it relates to the P300-ERP. METHODS: To examine the possible sources of this discrepancy, we conducted a meta-analysis of ERP results together with cognitive performance that were systemically stratified by relevant demographic and methodological moderators. RESULTS: Our results indicate that while acute exercise exerted an overall stable effect on cognitive improvement, associated with enlarged P300 amplitudes, the effect size varied across factors of age, biological sex, exercise intensity, exercise type, control type, and experimental design. Future research taking into consideration modulating factors as to avoid misestimating the beneficial effects of acute exercise are encouraged. CONCLUSION: All in all, and to our knowledge, this is the first meta-analysis quantitatively summarizing the relevant literature on the associations between P300-ERP correlates, acute exercise, and its positive influence on attention and cognitive performance in healthy individuals.


Assuntos
Eletroencefalografia , Exercício Físico , Humanos , Exercício Físico/psicologia , Cognição , Atenção , Potenciais Evocados P300
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA