Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(7): 410, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900272

RESUMO

Four polyoxomolybdated compounds based on Tetp (Tetp = 4-[4-(2-Thiophen-2-yl-ethyl)-4H-[1, 2, 4]triazole-3-yl]-pyridine), namely [Zn(Tetp)2(H2O)2][(ß-Mo8O26)0.5] (Zn-Mo8), [Co(Tetp)2(H2O)2][(ß-Mo8O26)0.5] (Co-Mo8), [Cu4(Tetp)6(H2O)2]{H3[K(H2O)3](θ-Mo8O26)(Mo12O40)}·8H2O (Cu-Mo20) and [Cu3(Tetp)3][PMo12O40]·H2O (Cu-PMo12) are synthesized by hydrothermal methods and are used as electrode materials for supercapacitors(SCs) and electrochemical sensors. Inserting polyoxometalates (POMs) with redox active sites into transition metal compounds (TMCs) can improve the internal ion/electron transfer rate, thus effectively enhancing the electrochemical performance. Compared with the parent POMs, four compounds exhibit excellent electrochemical properties. In particular, Cu-PMo12 shows an excellent specific capacitance (812.3 F g-1 at 1 A g-1) and stability (94.42%), as well as a wide detection range (0.05 to 1250 µM) and a low detection limit (0.057 µM) for NO2- sensing.

2.
Dalton Trans ; 53(37): 15412-15420, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39162704

RESUMO

Environmental pollution and energy problems caused by excessive use of fossil fuels deviate from the theme of green and sustainable development. It is very promising to detect small molecules or catalyze the conversion of pollutants to obtain renewable energy by using photoelectric technology. Therefore, there is an urgent requirement to develop materials with low detection limits and high catalytic performance. Keggin polyoxometalate-based metal-organic compounds (POMOCs) hold great promise for sensing, and catalytic applications due to their controllable structure, remarkable reversible multi-electron transfer capability and multi-component synergistic activity. In this review, the applications of Keggin POMOCs in photocatalytic/electrocatalytic conversion of energy materials and the detection of metal ion/inorganic molecule are introduced. The different mechanisms of Keggin POM units and MOF units in sensors and catalysis are discussed. Additionally, the prospects of the Keggin POMOCs as electrode materials or catalysts for enhancing the performance of sensors and catalysts are discussed, which will provide a platform for further development of advanced Keggin POMOC material-based sensors and catalytic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA