Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 35(5): 769-777, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101335

RESUMO

MOTIVATION: Discovering the evolution of a tumor may help identify driver mutations and provide a more comprehensive view on the history of the tumor. Recent studies have tackled this problem using multiple samples sequenced from a tumor, and due to clinical implications, this has attracted great interest. However, such samples usually mix several distinct tumor subclones, which confounds the discovery of the tumor phylogeny. RESULTS: We study a natural problem formulation requiring to decompose the tumor samples into several subclones with the objective of forming a minimum perfect phylogeny. We propose an Integer Linear Programming formulation for it, and implement it into a method called MIPUP. We tested the ability of MIPUP and of four popular tools LICHeE, AncesTree, CITUP, Treeomics to reconstruct the tumor phylogeny. On simulated data, MIPUP shows up to a 34% improvement under the ancestor-descendant relations metric. On four real datasets, MIPUP's reconstructions proved to be generally more faithful than those of LICHeE. AVAILABILITY AND IMPLEMENTATION: MIPUP is available at https://github.com/zhero9/MIPUP as open source. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Filogenia , Programação Linear , Software
2.
Artigo em Inglês | MEDLINE | ID: mdl-28113405

RESUMO

Hajirasouliha and Raphael (WABI 2014) proposed a model for deconvoluting mixed tumor samples measured from a collection of high-throughput sequencing reads. This is related to understanding tumor evolution and critical cancer mutations. In short, their formulation asks to split each row of a binary matrix so that the resulting matrix corresponds to a perfect phylogeny and has the minimum number of rows among all matrices with this property. In this paper, we disprove several claims about this problem, including an NP-hardness proof of it. However, we show that the problem is indeed NP-hard, by providing a different proof. We also prove NP-completeness of a variant of this problem proposed in the same paper. On the positive side, we propose an efficient (though not necessarily optimal) heuristic algorithm based on coloring co-comparability graphs, and a polynomial time algorithm for solving the problem optimally on matrix instances in which no column is contained in both columns of a pair of conflicting columns. Implementations of these algorithms are freely available at https://github.com/alexandrutomescu/MixedPerfectPhylogeny.


Assuntos
Algoritmos , Biologia Computacional/métodos , Neoplasias/genética , Filogenia , Humanos , Modelos Genéticos , Neoplasias/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA