Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 543(7646): 547-549, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28297711

RESUMO

Insect pollinators such as bumblebees (Bombus spp.) are in global decline. A major cause of this decline is habitat loss due to agricultural intensification. A range of global and national initiatives aimed at restoring pollinator habitats and populations have been developed. However, the success of these initiatives depends critically upon understanding how landscape change affects key population-level parameters, such as survival between lifecycle stages, in target species. This knowledge is lacking for bumblebees, because of the difficulty of systematically finding and monitoring colonies in the wild. We used a combination of habitat manipulation, land-use and habitat surveys, molecular genetics and demographic and spatial modelling to analyse between-year survival of family lineages in field populations of three bumblebee species. Here we show that the survival of family lineages from the summer worker to the spring queen stage in the following year increases significantly with the proportion of high-value foraging habitat, including spring floral resources, within 250-1,000 m of the natal colony. This provides evidence for a positive impact of habitat quality on survival and persistence between successive colony cycle stages in bumblebee populations. These findings also support the idea that conservation interventions that increase floral resources at a landscape scale and throughout the season have positive effects on wild pollinators in agricultural landscapes.


Assuntos
Abelhas/fisiologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura , Animais , Abelhas/classificação , Comportamento Alimentar , Feminino , Hibernação , Masculino , Polinização , Estações do Ano , Análise de Sobrevida
2.
J Environ Manage ; 334: 117465, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36780812

RESUMO

Grasslands account for ∼30% of global terrestrial carbon (C), of which most is stored in soils and provide important ecosystem services including livestock and forage production. Reseeding of temporary grasslands on a 5-year cycle is a common management practice to rejuvenate sward productivity and reduce soil compaction, but is physically disruptive and may reduce soil organic carbon (SOC) stocks. However, research to date is limited, which impacts on the ability to optimise grassland management for climate change mitigation. To determine whether extending the time interval up to 20 years between grassland reseeding can increase stable SOC stocks, a soil survey was conducted across three UK grassland chrono-sequences comprising 24 fields on contrasting soil types. We found that grassland SOC stocks (39.8-114.8 Mg C ha-1) were higher than co-located fields in arable rotations (29.3-83.2 Mg C ha-1) and the relationship with grassland age followed a curvilinear relationship with rapid SOC stock accumulation in the year following reseeding (2.69-18.3 Mg C ha-1 yr-1) followed by progressively slower SOC accumulation up to 20 years. Contrary to expectation, all grasslands had similar soil bulk densities and sward composition questioning the need for traditional 5-year reseeding cycles. Fractionation of soils into stable mineral associated fractions revealed that coarse textured grassland topsoils (0-15 cm) were near-saturated in C irrespective of grassland age whilst loam soils reached saturation ∼10 years after reseeding. Fine-textured topsoils and subsoils (15-30 cm) of all textures were under saturated and thus appear to hold the most potential to accrue additional stable C. However, the lack of a relationship between C saturation deficit and grassland age in subsoils suggests that more innovative management to promote SOC redistribution to depth, such as a switch to diverse leys or full inversion tillage may be required to maximise subsoil SOC stocks. Taken together our findings suggest that extending the time between grassland reseeding could temporarily increase SOC stocks without compromising sward composition or soil structure. However, detailed monitoring of the trade-offs with grassland productivity are required. Fine textured soils and subsoils (15-30 cm) have the greatest potential to accrue additional stable C due to under saturation of fine mineral pools.


Assuntos
Ecossistema , Solo , Solo/química , Pradaria , Carbono , Sequestro de Carbono
3.
Basic Appl Ecol ; 58: 2-14, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35115899

RESUMO

Sown wildflower areas are increasingly recommended as an agri-environmental intervention measure, but evidence for their success is limited to particular insect groups or hampered by the challenges of establishing seed mixes and maintaining flower abundance over time. We conducted a replicated experiment to establish wildflower areas to support insect pollinators in apple orchards. Over three years, and across 23 commercial UK orchards with and without sown wildflowers, we conducted 828 transect surveys across various non-crop habitats. We found that the abundance of flower-visiting solitary bees, bumblebees, honeybees, and beetles was increased in sown wildflower areas, compared with existing non-crop habitats in control orchards, from the second year following floral establishment. Abundance of hoverflies and other non-syrphid flies was increased in wildflower areas from the first year. Beyond the effect of wildflower areas, solitary bee abundance was also positively related to levels of floral cover in other local habitats within orchards, but neither local nor wider landscape-scale context affected abundance of other studied insect taxa within study orchards. There was a change in plant community composition on the sown wildflower areas between years, and in patterns of flowering within and between years, showing a succession from unsown weedy species towards a dominance of sown species over time. We discuss how the successful establishment of sown wildflower areas and delivery of benefits for different insect taxa relies on appropriate and reactive management practices as a key component of any such agri-environment scheme.

4.
Pest Manag Sci ; 77(6): 2726-2736, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33496990

RESUMO

BACKGROUND: Arable weeds threaten farming and food production, impacting on productivity. Large-scale data on weed populations are typically lacking, and changes are frequently undocumented until they reach problem levels. Managing the future spread of weeds requires that we understand the factors that influence current densities and distributions. In doing so, one of the challenges is to measure populations at a large enough scale to be able to accurately measure changes in densities and distributions. Here we analyse the density and distribution of a major weed (Alopecurus myosuroides) on a large scale. Our objectives were to (i) develop a methodology for rapid measurement of occurrence and abundance, (ii) test hypotheses about the roles of soils and climate variation in determining densities, and (iii) use this information to identify areas in which occurrence could increase in the future. RESULTS: Populations were mapped through England over 4 years in 4631 locations. We also analysed UK atlas data published over the past 50 years. Densities of populations show significant interannual variability, but historical data show that the species has spread. We find significant impacts of soil and rainfall on densities, which increase with the proportion of heavy soils, but decrease with increasing rainfall. Compared with independent atlas data we found that our statistical models provide good predictions of large-scale occupancy and we provide maps of current and potential densities. CONCLUSION: Models of spread highlight the localised nature of colonisation, and this emphasises the need for management to limit dispersal. Comparisons of current, historical and potential distributions suggest sizeable habitable areas in which increases in abundance are still possible. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Herbicidas , Agricultura , Inglaterra , Plantas Daninhas , Poaceae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA