Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioorg Med Chem ; 26(11): 2937-2957, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29776834

RESUMO

Ligands for the bromodomain and extra-terminal domain (BET) family of bromodomains have shown promise as useful therapeutic agents for treating a range of cancers and inflammation. Here we report that our previously developed 3,5-dimethylisoxazole-based BET bromodomain ligand (OXFBD02) inhibits interactions of BRD4(1) with the RelA subunit of NF-κB, in addition to histone H4. This ligand shows a promising profile in a screen of the NCI-60 panel but was rapidly metabolised (t½â€¯= 39.8 min). Structure-guided optimisation of compound properties led to the development of the 3-pyridyl-derived OXFBD04. Molecular dynamics simulations assisted our understanding of the role played by an internal hydrogen bond in altering the affinity of this series of molecules for BRD4(1). OXFBD04 shows improved BRD4(1) affinity (IC50 = 166 nM), optimised physicochemical properties (LE = 0.43; LLE = 5.74; SFI = 5.96), and greater metabolic stability (t½â€¯= 388 min).


Assuntos
Proteínas Nucleares/química , Fatores de Transcrição/química , Bioensaio , Western Blotting , Proteínas de Ciclo Celular , Cristalografia por Raios X , Estabilidade de Medicamentos , Compostos Heterocíclicos de 4 ou mais Anéis/química , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Concentração Inibidora 50 , Ligantes , Luciferases/química , Células MCF-7 , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
2.
J Med Chem ; 67(12): 10464-10489, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38866424

RESUMO

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins are important epigenetic regulators that elicit their effect through binding histone tail N-acetyl lysine (KAc) post-translational modifications. Recognition of such markers has been implicated in a range of oncology and immune diseases and, as such, small-molecule inhibition of the BET family bromodomain-KAc protein-protein interaction has received significant interest as a therapeutic strategy, with several potential medicines under clinical evaluation. This work describes the structure- and property-based optimization of a ligand and lipophilic efficient pan-BET bromodomain inhibitor series to deliver candidate I-BET787 (70) that demonstrates efficacy in a mouse model of inflammation and suitable properties for both oral and intravenous (IV) administration. This focused two-phase explore-exploit medicinal chemistry effort delivered the candidate molecule in 3 months with less than 100 final compounds synthesized.


Assuntos
Administração Intravenosa , Animais , Administração Oral , Camundongos , Relação Estrutura-Atividade , Humanos , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Estrutura Molecular
3.
J Med Chem ; 66(23): 15728-15749, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37967462

RESUMO

Small-molecule-mediated disruption of the protein-protein interactions between acetylated histone tails and the tandem bromodomains of the bromodomain and extra-terminal (BET) family of proteins is an important mechanism of action for the potential modulation of immuno-inflammatory and oncology disease. High-quality chemical probes have proven invaluable in elucidating profound BET bromodomain biology, with seminal publications of both pan- and domain-selective BET family bromodomain inhibitors enabling academic and industrial research. To enrich the toolbox of structurally differentiated N-terminal bromodomain (BD1) BET family chemical probes, this work describes an analysis of the GSK BRD4 bromodomain data set through a lipophilic efficiency lens, which enabled identification of a BD1 domain-biased benzimidazole series. Structure-guided growth targeting a key Asp/His BD1/BD2 switch enabled delivery of GSK023, a high-quality chemical probe with 300-1000-fold BET BD1 domain selectivity and a phenotypic cellular fingerprint consistent with BET bromodomain inhibition.


Assuntos
Proteínas Nucleares , Fatores de Transcrição , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Domínios Proteicos , Histonas/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
J Med Chem ; 65(22): 15174-15207, 2022 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-36378954

RESUMO

The bromodomain and extra terminal (BET) family of proteins are an integral part of human epigenome regulation, the dysregulation of which is implicated in multiple oncology and inflammatory diseases. Disrupting the BET family bromodomain acetyl-lysine (KAc) histone protein-protein interaction with small-molecule KAc mimetics has proven to be a disease-relevant mechanism of action, and multiple molecules are currently undergoing oncology clinical trials. This work describes an efficiency analysis of published GSK pan-BET bromodomain inhibitors, which drove a strategic choice to focus on the identification of a ligand-efficient KAc mimetic with the hypothesis that lipophilic efficiency could be drastically improved during optimization. This focus drove the discovery of the highly ligand-efficient and structurally distinct benzoazepinone KAc mimetic. Following crystallography to identify suitable growth vectors, the benzoazepinone core was optimized through an explore-exploit structure-activity relationship (SAR) approach while carefully monitoring lipophilic efficiency to deliver I-BET432 (41) as an oral candidate quality molecule.


Assuntos
Lisina , Fatores de Transcrição , Humanos , Lisina/metabolismo , Ligantes , Domínios Proteicos , Histonas/metabolismo
5.
J Med Chem ; 65(3): 2262-2287, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34995458

RESUMO

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free-Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation.


Assuntos
Aminoquinolinas/química , Desenho de Fármacos , Proteínas/metabolismo , Administração Oral , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacocinética , Aminoquinolinas/uso terapêutico , Animais , Benzoatos/química , Benzoatos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cães , Meia-Vida , Humanos , Masculino , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Proteínas/antagonistas & inibidores , Ratos , Relação Estrutura-Atividade
6.
ACS Med Chem Lett ; 12(8): 1308-1317, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34413961

RESUMO

Bromodomain containing proteins and the acetyl-lysine binding bromodomains contained therein are increasingly attractive targets for the development of novel epigenetic therapeutics. To help validate this target class and unravel the complex associated biology, there has been a concerted effort to develop selective small molecule bromodomain inhibitors. Herein we describe the structure-based efforts and multiple challenges encountered in optimizing a naphthyridone template into selective TAF1(2) bromodomain inhibitors which, while unsuitable as chemical probes themselves, show promise for the future development of small molecules to interrogate TAF1(2) biology. Key to this work was the introduction and modulation of the basicity of a pendant amine which had a substantial impact on not only bromodomain selectivity but also cellular target engagement.

7.
ACS Infect Dis ; 7(8): 2238-2249, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203208

RESUMO

The Trypanosoma cruzi (T. cruzi) parasite is the cause of Chagas disease, a neglected disease endemic in South America. The life cycle of the T. cruzi parasite is complex and includes transitions between distinct life stages. This change in phenotype (without a change in genotype) could be controlled by epigenetic regulation, and might involve the bromodomain-containing factors 1-5 (TcBDF1-5). However, little is known about the function of the TcBDF1-5. Here we describe a fragment-based approach to identify ligands for T. cruzi bromodomain-containing factor 3 (TcBDF3). We expressed a soluble construct of TcBDF3 in E. coli, and used this to develop a range of biophysical assays for this protein. Fragment screening identified 12 compounds that bind to the TcBDF3 bromodomain. On the basis of this screen, we developed functional ligands containing a fluorescence or 19F reporter group, and a photo-crosslinking probe for TcBDF3. These tool compounds will be invaluable in future studies on the function of TcBDF3 and will provide insight into the biology of T. cruzi.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Epigênese Genética , Escherichia coli , Humanos , Ligantes , Trypanosoma cruzi/genética
8.
Org Lett ; 22(4): 1659-1664, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31999132

RESUMO

Malonoyl peroxide 6 is an effective reagent for the syn- or anti-oxyamination of alkenes. Reaction of 6 and an alkene in the presence of O-tert-butyl-N-tosylcarbamate (R3 = CO2tBu) leads to the anti-oxyaminated product in up to 99% yield. Use of O-methyl-N-tosyl carbamate (R3 = CO2Me) as the nitrogen nucleophile followed by treatment of the product with trifluoroacetic acid leads to the syn-oxyaminated product in up to 77% yield. Mechanisms consistent with the observed selectivities are proposed.

9.
J Med Chem ; 63(11): 5816-5840, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32410449

RESUMO

Non-BET bromodomain-containing proteins have become attractive targets for the development of novel therapeutics targeting epigenetic pathways. To help facilitate the target validation of this class of proteins, structurally diverse small-molecule ligands and methodologies to produce selective inhibitors in a predictable fashion are in high demand. Herein, we report the development and application of atypical acetyl-lysine (KAc) methyl mimetics to take advantage of the differential stability of conserved water molecules in the bromodomain binding site. Discovery of the n-butyl group as an atypical KAc methyl mimetic allowed generation of 31 (GSK6776) as a soluble, permeable, and selective BRD7/9 inhibitor from a pyridazinone template. The n-butyl group was then used to enhance the bromodomain selectivity of an existing BRD9 inhibitor and to transform pan-bromodomain inhibitors into BRD7/9 selective compounds. Finally, a solvent-exposed vector was defined from the pyridazinone template to enable bifunctional molecule synthesis, and affinity enrichment chemoproteomic experiments were used to confirm several of the endogenous protein partners of BRD7 and BRD9, which form part of the chromatin remodeling PBAF and BAF complexes, respectively.


Assuntos
Proteínas Cromossômicas não Histona/antagonistas & inibidores , Lisina/química , Piridazinas/química , Fatores de Transcrição/antagonistas & inibidores , Sítios de Ligação , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Piridazinas/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo
10.
J Med Chem ; 63(2): 714-746, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31904959

RESUMO

The bromodomain and extraterminal (BET) family of bromodomain-containing proteins are important regulators of the epigenome through their ability to recognize N-acetyl lysine (KAc) post-translational modifications on histone tails. These interactions have been implicated in various disease states and, consequently, disruption of BET-KAc binding has emerged as an attractive therapeutic strategy with a number of small molecule inhibitors now under investigation in the clinic. However, until the utility of these advanced candidates is fully assessed by these trials, there remains scope for the discovery of inhibitors from new chemotypes with alternative physicochemical, pharmacokinetic, and pharmacodynamic profiles. Herein, we describe the discovery of a candidate-quality dimethylpyridone benzimidazole compound which originated from the hybridization of a dimethylphenol benzimidazole series, identified using encoded library technology, with an N-methyl pyridone series identified through fragment screening. Optimization via structure- and property-based design led to I-BET469, which possesses favorable oral pharmacokinetic properties, displays activity in vivo, and is projected to have a low human efficacious dose.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Proteínas/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacocinética , Benzimidazóis/farmacologia , Quimiocina CCL2/biossíntese , Cristalografia por Raios X , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Interleucina-6/antagonistas & inibidores , Leucócitos/efeitos dos fármacos , Masculino , Camundongos , Modelos Moleculares , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas
11.
ChemMedChem ; 14(4): 362-385, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30624862

RESUMO

The bromodomain and extra terminal (BET) family of bromodomain-containing proteins (BCPs) have been the subject of extensive research over the past decade, resulting in a plethora of high-quality chemical probes for their tandem bromodomains. In turn, these chemical probes have helped reveal the profound biological role of the BET bromodomains and their role in disease, ultimately leading to a number of molecules in active clinical development. However, the BET subfamily represents just 8/61 of the known human bromodomains, and attention has now expanded to the biological role of the remaining 53 non-BET bromodomains. Rapid growth of this research area has been accompanied by a greater understanding of the requirements for an effective bromodomain chemical probe and has led to a number of new non-BET bromodomain chemical probes being developed. Advances since December 2015 are discussed, highlighting the strengths/caveats of each molecule, and the value they add toward validating the non-BET bromodomains as tractable therapeutic targets.


Assuntos
Sondas Moleculares/química , Proteínas/química , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos Nucleares/metabolismo , Proteínas de Ligação a DNA , Humanos , Sondas Moleculares/metabolismo , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Filogenia , Domínios Proteicos , Proteínas/classificação , Proteínas/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo
12.
J Am Chem Soc ; 130(15): 5368-77, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18303837

RESUMO

A 1,2,3,4-tetrahydro-9a,4a-(iminoethano)-9H-carbazole (4) is a central structural feature of the Strychnos alkaloid minfiensine (1) and akuammiline alkaloids such as vincorine (5) and echitamine (6). A cascade catalytic asymmetric Heck-iminium cyclization was developed that rapidly provides 3,4-dihydro-9a,4a-(iminoethano)-9H-carbazoles in high enantiomeric purity. Two sequences were developed for advancing 3,4-dihydro-9a,4a-(iminoethano)-9H-carbazole 27 to (+)-minfiensine. In our first-generation approach, a reductive Heck cyclization was employed to form the fifth ring of (+)-minfiensine. In a second more concise total synthesis, an intramolecular palladium-catalyzed ketone enolate vinyl iodide coupling was employed to construct the final ring of (+)-minfiensine. This second-generation total synthesis of enantiopure (+)-minfiensine was accomplished in 6.5% overall yield and 15 steps from 1,2-cyclohexanedione and anisidine 13. A distinctive feature of this sequence is the use of palladium-catalyzed reactions to form all carbon-carbon bonds in the transformation of these simple precursors to (+)-minfiensine.


Assuntos
Alcaloides/síntese química , Carbazóis/síntese química , Iminas/química , Strychnos/química , Alcaloides/química , Carbazóis/química , Cristalografia por Raios X , Ciclização , Cicloparafinas/química , Compostos de Epóxi/química , Íons/química , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
13.
ACS Chem Biol ; 13(10): 2862-2867, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30200762

RESUMO

P300/CBP-associated factor (PCAF) and general control nonderepressible 5 (GCN5) are closely related epigenetic proteins, each containing an acetyltransferase domain and a bromodomain. Consistent with reported roles for these proteins in immune function, we find that PCAF-deficient macrophages exhibit a markedly reduced ability to produce cytokines upon stimulation with lipopolysaccharide (LPS). Investigating the potential to target this pathway pharmacologically, we show that chemical inhibition of the PCAF/GCN5 bromodomains is insufficient to recapitulate the diminished inflammatory response of PCAF-deficient immune cells. However, by generating the first PCAF/GCN5 proteolysis targeting chimera (PROTAC), we identify small molecules able to degrade PCAF/GCN5 and to potently modulate the expression of multiple inflammatory mediators in LPS-stimulated macrophages and dendritic cells. Our data illustrate the power of the PROTAC approach in the context of multidomain proteins, revealing a novel anti-inflammatory therapeutic opportunity for targeting PCAF/GCN5.


Assuntos
Benzoatos/farmacologia , Piperidinas/farmacologia , Piridazinas/farmacologia , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Benzoatos/síntese química , Benzoatos/química , Diferenciação Celular/efeitos dos fármacos , Citocinas/metabolismo , Células Dendríticas/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Peptídeo Hidrolases/metabolismo , Piperidinas/síntese química , Piperidinas/química , Domínios Proteicos , Proteólise , Piridazinas/síntese química , Piridazinas/química , Estereoisomerismo , Ubiquitina-Proteína Ligases , Fatores de Transcrição de p300-CBP/química
14.
J Med Chem ; 60(2): 695-709, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28002667

RESUMO

p300/CREB binding protein associated factor (PCAF/KAT2B) and general control nonderepressible 5 (GCN5/KAT2A) are multidomain proteins that have been implicated in retroviral infection, inflammation pathways, and cancer development. However, outside of viral replication, little is known about the dependence of these effects on the C-terminal bromodomain. Herein, we report GSK4027 as a chemical probe for the PCAF/GCN5 bromodomain, together with GSK4028 as an enantiomeric negative control. The probe was optimized from a weakly potent, nonselective pyridazinone hit to deliver high potency for the PCAF/GCN5 bromodomain, high solubility, cellular target engagement, and ≥18000-fold selectivity over the BET family, together with ≥70-fold selectivity over the wider bromodomain families.


Assuntos
Histona Acetiltransferases/química , Sondas Moleculares/química , Piperidinas/química , Piridazinas/química , Fatores de Transcrição de p300-CBP/química , Animais , Permeabilidade da Membrana Celular , Humanos , Membranas Artificiais , Camundongos , Sondas Moleculares/síntese química , Piperidinas/síntese química , Domínios Proteicos , Piridazinas/síntese química , Estereoisomerismo , Relação Estrutura-Atividade
15.
Org Lett ; 8(5): 995-8, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16494493

RESUMO

Regio- and stereoselective deprotonation of bishomoallylic terminal N-Bus (Bus=tert-butylsulfonyl)-protected aziridines generate aziridinyl anions that undergo diastereoselective intramolecular cyclopropanation giving trans-2-aminobicyclo[3.1.0]hexanes in good to excellent yields.

16.
Curr Opin Chem Biol ; 33: 58-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27295577

RESUMO

Bromodomains have emerged as an exciting target class for drug discovery over the past decade. Research has primarily focused on the bromodomain and extra terminal (BET) family of bromodomains, which has led to the development of multiple small molecule inhibitors and an increasing number of clinical assets. The excitement centred on the clinical potential of BET inhibition has stimulated intense interest in the broader family and the growing number of non-BET bromodomain chemical probes has facilitated phenotypic investigations, implicating these targets in a variety of disease pathways including cancer, inflammation, embryonic development and neurological disorders.


Assuntos
Proteínas/química , Bibliotecas de Moléculas Pequenas/química , Ensaios Clínicos como Assunto , Descoberta de Drogas , Humanos , Modelos Moleculares , Sondas Moleculares
17.
ChemMedChem ; 11(5): 477-87, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26749027

RESUMO

The bromodomain and extra terminal (BET) family of bromodomains have been the focus of extensive research, leading to the development of many potent, selective chemical probes and recent clinical assets. The profound biology associated with BET bromodomain inhibition has provided a convincing rationale for targeting bromodomains for the treatment of disease. However, the BET family represents just eight of the at least 56 human bromodomains identified to date. Until recently, there has been significantly less interest in non-BET bromodomains, leaving a vast area of research and the majority of this new target class yet to be thoroughly investigated. It has been widely reported that several non-BET bromodomain containing proteins are associated with various diseases including cancer and HIV. Therefore, the development of chemical probes for non-BET bromodomains will facilitate elucidation of their precise biological roles and potentially lead to the development of new medicines. This review summarises the progress made towards the development of non-BET bromodomain chemical probes to date. In addition, we highlight the potential for future work in this new and exciting area.


Assuntos
Bromo/química , Sondas Moleculares , Animais , Cristalografia por Raios X , Humanos , Filogenia
18.
ACS Chem Biol ; 11(7): 2002-10, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27197014

RESUMO

The 2-oxoglutarate-dependent dioxygenase target class comprises around 60 enzymes including several subfamilies with relevance to human disease, such as the prolyl hydroxylases and the Jumonji-type lysine demethylases. Current drug discovery approaches are largely based on small molecule inhibitors targeting the iron/2-oxoglutarate cofactor binding site. We have devised a chemoproteomics approach based on a combination of unselective active-site ligands tethered to beads, enabling affinity capturing of around 40 different dioxygenase enzymes from human cells. Mass-spectrometry-based quantification of bead-bound enzymes using a free-ligand competition-binding format enabled the comprehensive determination of affinities for the cosubstrate 2-oxoglutarate and for oncometabolites such as 2-hydroxyglutarate. We also profiled a set of representative drug-like inhibitor compounds. The results indicate that intracellular competition by endogenous cofactors and high active site similarity present substantial challenges for drug discovery for this target class.


Assuntos
Dioxigenases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Proteômica
19.
J Med Chem ; 59(4): 1370-87, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26771203

RESUMO

Following the discovery of cell penetrant pyridine-4-carboxylate inhibitors of the KDM4 (JMJD2) and KDM5 (JARID1) families of histone lysine demethylases (e.g., 1), further optimization led to the identification of non-carboxylate inhibitors derived from pyrido[3,4-d]pyrimidin-4(3H)-one. A number of exemplars such as compound 41 possess interesting activity profiles in KDM4C and KDM5C biochemical and target-specific, cellular mechanistic assays.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histona Desmetilases/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Pirimidinonas/química , Pirimidinonas/farmacologia , Linhagem Celular , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Inibidores Enzimáticos/farmacocinética , Histona Desmetilases/química , Histona Desmetilases/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Pirimidinonas/farmacocinética , Relação Estrutura-Atividade
20.
J Med Chem ; 59(4): 1425-39, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25856009

RESUMO

Acetylation of histone lysine residues is one of the most well-studied post-translational modifications of chromatin, selectively recognized by bromodomain "reader" modules. Inhibitors of the bromodomain and extra terminal domain (BET) family of bromodomains have shown profound anticancer and anti-inflammatory properties, generating much interest in targeting other bromodomain-containing proteins for disease treatment. Herein, we report the discovery of I-BRD9, the first selective cellular chemical probe for bromodomain-containing protein 9 (BRD9). I-BRD9 was identified through structure-based design, leading to greater than 700-fold selectivity over the BET family and 200-fold over the highly homologous bromodomain-containing protein 7 (BRD7). I-BRD9 was used to identify genes regulated by BRD9 in Kasumi-1 cells involved in oncology and immune response pathways and to the best of our knowledge, represents the first selective tool compound available to elucidate the cellular phenotype of BRD9 bromodomain inhibition.


Assuntos
Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Fatores de Transcrição/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA