Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 14(9): 4029-38, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26147956

RESUMO

Ubiquitination is a key protein post-translational modification that regulates many important cellular pathways and whose levels are regulated by equilibrium between the activities of ubiquitin ligases and deubiquitinases. Here, we present a method to identify specific deubiquitinase substrates based on treatment of cell lysates with recombinant enzymes, immunoaffinity purification, and global quantitative proteomic analysis. As a model system to identify substrates, we used a virulence-related deubiquitinase, SseL, secreted by Salmonella enterica serovar Typhimurium into host cells. Using this approach, two SseL substrates were identified in the RAW 264.7 murine macrophage-like cell line, S100A6 and heterogeneous nuclear ribonuclear protein K, in addition to the previously reported K63-linked ubiquitin chains. These substrates were further validated by a combination of enzymatic and binding assays. This method can be used for the systematic identification of substrates of deubiquitinases from other organisms and applied to study their functions in physiology and disease.


Assuntos
Proteínas de Bactérias/metabolismo , Proteômica/métodos , Salmonella typhimurium/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Animais , Proteínas de Bactérias/química , Linhagem Celular , Imunoensaio , Espectrometria de Massas , Camundongos , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Proteases Específicas de Ubiquitina/química , Ubiquitinação
2.
Mol Ther Methods Clin Dev ; 17: 796-809, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32355868

RESUMO

In vivo tracking of retrovirus-tagged blood stem and progenitor cells is used to study hematopoiesis. Two techniques are used most frequently: sequencing the locus of retrovirus insertion, termed integration site analysis, or retrovirus DNA barcode sequencing. Of these, integration site analysis is currently the only available technique for monitoring clonal pools in patients treated with retrovirus-modified blood cells. A key question is how these two techniques compare in their ability to detect and quantify clonal contributions. In this study, we assessed both methods simultaneously in a clinically relevant nonhuman primate model of autologous, myeloablative transplantation. Our data demonstrate that both methods track abundant clones; however, DNA barcode sequencing is at least 5-fold more efficient than integration site analysis. Using computational simulation to identify the sources of low efficiency, we identify sampling depth as the major factor. We show that the sampling required for integration site analysis to achieve minimal coverage of the true clonal pool is likely prohibitive, especially in cases of low gene-modified cell engraftment. We also show that early subsampling of different blood cell lineages adds value to clone tracking information in terms of safety and hematopoietic biology. Our analysis demonstrates DNA barcode sequencing as a useful guide to maximize integration site analysis interpretation in gene therapy patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA