Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(1): 202-217.e9, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29958108

RESUMO

Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport through an FG domain-controlled barrier. We now explore how surface-features of a mobile species determine its NPC passage rate. Negative charges and lysines impede passage. Hydrophobic residues, certain polar residues (Cys, His), and, surprisingly, charged arginines have striking translocation-promoting effects. Favorable cation-π interactions between arginines and FG-phenylalanines may explain this apparent paradox. Application of these principles to redesign the surface of GFP resulted in variants that show a wide span of transit rates, ranging from 35-fold slower than wild-type to ∼500 times faster, with the latter outpacing even naturally occurring nuclear transport receptors (NTRs). The structure of a fast and particularly FG-specific GFPNTR variant illustrates how NTRs can expose multiple regions for binding hydrophobic FG motifs while evading non-specific aggregation. Finally, we document that even for NTR-mediated transport, the surface-properties of the "passively carried" cargo can strikingly affect the translocation rate.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Mutagênese Sítio-Dirigida , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Domínios Proteicos , Estrutura Quaternária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Propriedades de Superfície
2.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575403

RESUMO

Natural killer (NK) cell therapies are a tool to antagonize a dysfunctional immune system. NK cells recognize malignant cells, traffic to a tumor location, and infiltrate the solid tumor. The immune checkpoint molecule human leukocyte antigen (HLA)-G is upregulated on malignant cells but not on healthy surrounding cells, the requirement of understanding the basis of receptor mediated events at the HLA-G/NK cell interface becomes obvious. The NK cell receptors ILT2 and KIR2DL4 have been described to bind to HLA-G; however, their differential function and expression levels on NK cell subsets suggest the existence of an unreported receptor. Here, we performed a ligand-based receptor capture on living cells utilizing sHLA-G*01:01 molecules coupled to TriCEPS and bound to NK cells followed by mass spectrometric analyses. We could define NKG2A/CD94 as a cognate receptor of HLA-G. To verify the results, we used the reciprocal method by expressing recombinant soluble heterodimeric NKG2A/CD94 molecules and used them to target HLA-G*01:01 expressing cells. NKG2A/CD94 could be confirmed as an immune receptor of HLA-G*01:01. Despite HLA-G is marginal polymorphic, we could previously demonstrate that the most common allelic subtypes HLA-G*01:01/01:03 and 01:04 differ in peptide repertoire, their engagement to NK cells, their catalyzation of dNK cell proliferation and their impact on NK cell development. Continuing these studies with regard to NKG2A/CD94 engagement we engineered recombinant single antigen presenting K562 cells and targeted the surface expressed HLA-G*01:01, 01:03 or 01:04 molecules with NKG2A/CD94. Specificity and sensitivity of HLA-G*01:04/NKG2A/CD94 engagement could be significantly verified. The binding affinity decreases when using K562-G*01:03 or K562-G*01:01 cells as targets. These results demonstrate that the ligand-receptor assignment between HLA-G and NKG2A/CD94 is dependent of the amino acid composition in the HLA-G heavy chain. Understanding the biophysical basis of receptor-mediated events that lead to NK cell inhibition would help to remove non-tumor reactive cells and support personalized mild autologous NK cell therapies.


Assuntos
Antígenos HLA-G/metabolismo , Células Matadoras Naturais/citologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Motivos de Aminoácidos , Biotina/análogos & derivados , Biotina/metabolismo , Linhagem Celular , Variação Genética , Células HEK293 , Antígenos HLA-G/química , Antígenos HLA-G/genética , Humanos , Hidrazinas/metabolismo , Células K562 , Células Matadoras Naturais/imunologia , Espectrometria de Massas , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Ligação Proteica , Succinimidas/metabolismo
3.
Immunogenetics ; 71(5-6): 353-360, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30941482

RESUMO

HLA-F belongs to the non-classical HLA-Ib molecules with a marginal polymorphic nature and tissue-restricted distribution. HLA-F is a ligand of the NK cell receptor KIR3DS1, whose activation initiates an antiviral downstream immune response and lead to delayed disease progression of HIV-1. During the time course of HIV infection, the expression of HLA-F is upregulated while its interaction with KIR3DS1 is diminished. Understanding HLA-F peptide selection and presentation is essential to a comprehensive understanding of this dynamic immune response and the molecules function. In this study, we were able to recover stable pHLA-F*01:01 complexes and analyze the characteristics of peptides naturally presented by HLA-F. These HLA-F-restricted peptides exhibit a non-canonical length without a defined N-terminal anchor. The peptide characteristics lead to a unique presentation profile and influence the stability of the protein. Furthermore, we demonstrate that almost all source proteins of HLA-F-restricted peptides are described to interact with HIV proteins. Understanding the balance switch between HLA-Ia and HLA-F expression and peptide selection will support to understand the role of HLA-F in viral pathogenesis.

4.
Immunogenetics ; 71(5-6): 361, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31020357

RESUMO

The original version of this article contained errors. The Article Title, Figures 1 and 3, and Electronic Supplementary Materials were incorrectly shown in the wrong version. The original article has been corrected.

5.
Int J Mol Sci ; 20(6)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909402

RESUMO

On healthy cells the non-classical HLA class Ib molecule HLA-E displays the cognate ligand for the NK cell receptor NKG2A/CD94 when bound to HLA class I signal peptide sequences. In a pathogenic situation when HLA class I is absent, HLA-E is bound to a diverse set of peptides and enables the stimulatory NKG2C/CD94 receptor to bind. The activation of CD8⁺ T cells by certain p:HLA-E complexes illustrates the dual role of this low polymorphic HLA molecule in innate and adaptive immunity. Recent studies revealed a shift in the HLA-E peptide repertoire in cells with defects in the peptide loading complex machinery. We recently showed that HLA-E presents a highly diverse set of peptides in the absence of HLA class Ia and revealed a non-protective feature against NK cell cytotoxicity mediated by these peptides. In the present study we have evaluated the molecular basis for the impaired NK cell inhibition by these peptides and determined the cell surface stability of individual p:HLA-E complexes and their binding efficiency to soluble NKG2A/CD94 or NKG2C/CD94 receptors. Additionally, we analyzed the recognition of these p:HLA-E epitopes by CD8⁺ T cells. We show that non-canonical peptides provide stable cell surface expression of HLA-E, and these p:HLA-E complexes still bind to NKG2/CD94 receptors in a peptide-restricted fashion. Furthermore, individual p:HLA-E complexes elicit activation of CD8⁺ T cells with an effector memory phenotype. These novel HLA-E epitopes provide new implications for therapies targeting cells with abnormal HLA class I expression.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Imunomodulação , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/química , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Peptídeos/química , Peptídeos/imunologia , Ligação Proteica , Multimerização Proteica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Antígenos HLA-E
6.
Biochim Biophys Acta ; 1853(10 Pt A): 2338-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26112988

RESUMO

The acidic nuclear phosphoproteins (ANP32A-H) are an evolutionarily conserved family of proteins with diverse and sometimes opposing cellular functions. Here we show that the oncogenic family members ANP32C and ANP32D are associated in complexes containing the molecular chaperone Hsp90. The oncogenic ANP32C protein appears to be highly unstable with a rapid degradation (t1/2>30 min) occurring upon treatment of cells with cycloheximide. ANP32C was also found to be associated with oncogenic Hsp90 complexes by virtue of its ability to interact and be immunoprecipitated by the Hsp90 inhibitor PU-H71. Further studies treating cells with the Hsp90 inhibitors PU-H71 and 17-AAG showed atypical increased protein stability and prevention of ANP32C degradation compared to the Hsp90 client AKT. Cells overexpressing ANP32C or its mutant ANP32CY140H showed enhanced sensitivity to treatment with PU-H71 as demonstrated by CCK-8 and colony formation assays. Our results highlight that certain malignancies with ANP32C/D overexpression or mutation might be specifically targeted using Hsp90 inhibitors.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteólise , Substituição de Aminoácidos , Benzodioxóis/farmacologia , Linhagem Celular , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Humanos , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Fosfoproteínas/genética , Estabilidade Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Purinas/farmacologia
7.
Immunogenetics ; 68(1): 29-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26552660

RESUMO

Human leukocyte antigen (HLA)-E molecules are potent inhibitors of NK cell-mediated killing. Low in polymorphisms, two alleles are widely expressed among diverse populations: HLA-E*01:01 and HLA-E*01:03. Both alleles are distinguished by one SNP resulting in the substitution Arg107Gly. Both alleles present a limited set of peptides derived from class I leader sequences physiologically; however, HLA-E*01:01 presents non-canonical peptides in the absence of HLA class I molecules. To further assess the functional differences between both alleles, we analyzed the peptide repertoire of HLA-E*01:03 by applying soluble HLA technology followed by mass-spectrometric peptide sequencing. HLA-E*01:03 restricted peptides showed a length of 9-17 amino acids and differed in their biophysical properties, no overlap in the peptide repertoire of both allelic variants could be observed; however, both alleles shared marginal peptides from the same proteomic content. Artificial APCs expressing empty HLA-E*01:01 or E*01:03 molecules were generated and stabilized using cognate HLA class I-derived peptide ligands to analyze the impact of residue 107 within the HLA-E heavy chain on the NKG2/CD94 receptor engagement. Differences in peptide stabilization could be translated to the density and half-life time of peptide-HLA-E molecules on the cell surface that subsequently impacted NK cell inhibition as verified by cytotoxicity assays. Taken together, these data illustrate functional differences of HLA-E allelic variants induced by a single amino acid. Furthermore, the function of HLA-E in pathophysiologic situations when the HLA processing machinery is interrupted seems to be more emphasized than previously described, implying a crucial role for HLA-E in tumor or viral immune episodes.


Assuntos
Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/imunologia , Sequência de Aminoácidos , Arginina/genética , Linhagem Celular , Testes Imunológicos de Citotoxicidade , Genes MHC Classe I , Glicina/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Peptídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas , Sinais Direcionadores de Proteínas/fisiologia , Antígenos HLA-E
8.
Immunogenetics ; 68(4): 247-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26758079

RESUMO

Defining permissive and non-permissive mismatches for transplantation is a demanding challenge. Single mismatches at amino acid (AA) position 156 of human leucocyte antigen (HLA) class I have been described to alter the peptide motif, repertoire, or mode of peptide loading through differential interaction with the peptide-loading complex. Hence, a single mismatch can tip the balance and trigger an immunological reaction. HLA-B*35 subtypes have been described to evade the loading complex, 156 mismatch distinguishing B*35:01 and B*35:08 changes the binding groove sufficiently to alter the sequence features of the selected peptide repertoire. To understand the functional influences of residue 156 in B*35 variants, we analyzed the peptide binding profiles of HLA-B*35:01(156Leu), B*35:08(156Arg) and B*35:62(156Trp). The glycoprotein tapasin represents a target for immune evasions and functions within the multimeric peptide-loading complex to stabilize empty class I molecules and promote acquisition of high-affinity peptides. All three B*35 subtypes showed a tapasin-independent mode of peptide acquisition. HLA-B*35-restricted peptides of low- and high-binding affinities were recovered in the presence and absence of tapasin and subsequently sequenced utilizing mass spectrometry. The peptides derived from B*35 variants differ substantially in their features dependent on their mode of recruitment; all peptides were preferentially anchored by Pro at p2 and Tyr, Phe, Leu, or Lys at pΩ. However, the Trp at residue 156 altered the p2 motif to an Ala and restricted the pΩ to a Trp. Our results highlight the importance of understanding the impact of key micropolymorphism and how a single AA mismatch orchestrates the neighboring AAs.


Assuntos
Substituição de Aminoácidos/genética , Antígeno HLA-B35/genética , Peptídeos/genética , Polimorfismo Genético/imunologia , Motivos de Aminoácidos/genética , Motivos de Aminoácidos/imunologia , Substituição de Aminoácidos/imunologia , Aminoácidos/genética , Aminoácidos/imunologia , Linhagem Celular , Retículo Endoplasmático/imunologia , Antígeno HLA-B35/imunologia , Transplante de Células-Tronco Hematopoéticas , Humanos , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/imunologia , Peptídeos/imunologia , Ligação Proteica/imunologia
9.
Biochim Biophys Acta ; 1840(3): 1004-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24211252

RESUMO

BACKGROUND: CD7 expression is found on ~30% of acute myeloblastic leukemias (AML). The leukemic progenitor cell line KG1a (CD7+) constitutively expresses GM-CSF while the parental KG1 (CD7-) cell line does not. This study focuses on the molecular basis of CD7 mediated GM-CSF regulation. METHODS: KG1a cells were treated with recombinant SECTM1-Fc protein, the PI3K kinase inhibitors wortmannin, LY292004, or PI4K activator spermine. Stable KG1-CD7+, KG1a-shCD7, KG1a-shETS1 as well as KG1a-GFP, KG1a-PKCßII-GFP cell lines were generated and the levels of CD7, GM-CSF and ETS-1 mRNA and protein were compared by real-time-PCR, western blotting, flow cytometry and ELISA. RESULTS: SECTM1 is expressed in Human Bone Marrow Endothelial Cells (HBMEC) and its expression can be upregulated by both IFN-γ. KG1a cells demonstrated high expression levels of CD7 and ETS-1 allowing a constitutative signaling through the PI3K/Atk pathway to promote GM-CSF expression, while KG1 cells with low expression of CD7 and ETS-1 showed low GM-CSF expression. On KG1a cells GM-CSF expression could be negatively regulated by PI3K inhibitors or by recombinant SECTM1-Fc. Overexpression of CD7 in KG1 cells was insufficient to promote GM-CSF expression, while silencing of CD7 or ETS-1 resulted in reduced GM-CSF expression levels. Differentiation capable KG1a cells overexpressing PKCßII illustrated complete loss of CD7, but maintained normal levels of both ETS-1 and GM-CSF expression. CONCLUSION: These findings add an additional layer to the previously described autocrine/paracrine signaling between leukemic progenitor cells and the bone marrow microenvironment and highlight a role for SECTM1 in both normal and malignant hematopoiesis. GENERAL SIGNIFICANCE: This work shows that SECTM1 secreted from bone marrow stromal cells may interact with CD7 to influence GM-CSF expression in leukemic cells.


Assuntos
Antígenos CD7/fisiologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Membrana/fisiologia , Células-Tronco Neoplásicas/metabolismo , Proteína Proto-Oncogênica c-ets-1/fisiologia , Linhagem Celular Tumoral , Humanos , Fosfatidilinositol 3-Quinases/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Transcrição Gênica
10.
Biochim Biophys Acta ; 1833(5): 1212-21, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23403278

RESUMO

The pp32 (ANP32A) gene acts as a tumor suppressor while its closely related homologue pp32r1 (ANP32C) is oncogenic and is overexpressed in breast, prostate and pancreatic tumors. The transduction of p53wt cell lines (ACHN and HeLa) with pp32r1 or pp32r1Y140H lentivirus increased the proliferation of p53wt cell lines compared to the untransduced control cells while transduction of the p53(R248W) MiaPaCa2 cell line had no effect. Cell cycle analysis of transduced ACHN cells by PI staining and BrdU incorporation illustrated a pronounced shift toward the S-phase of the cell cycle in cells overexpressing the pp32r1 and pp32r1Y140H proteins. Confocal microscopy and western blotting demonstrated that pp32r1 and the pp32r1Y140H mutant protein reside predominantly in the cytoplasm in constrast to pp32 which is a nuclear/cytoplasmic shuttling protein. To determine the effects of pp32r1 or pp32r1Y140H overexpression at the proteomic level we performed a comprehensive proteome analysis on ACHN, ACHN-pp32r1 and ACHN-pp32r1Y140H cell lysates using the isotope-coded protein label (ICPL) method. Among those proteins with >40% regulation were Macrophage Capping protein (CAPG) and Chromodomain Helicase DNA binding protein 4 (CHD4) proteins which were significantly upregulated by pp32r1 and pp32r1Y140H overexpression. This increase in CHD4 also appears to influence a number of cell cycle regulator genes including; p53, p21 and cyclinD1 as judged by western blotting. Silencing of CHD4 in ACHN-pp32r1Y140H cells using specific shRNA reverted the cell cycle dysregulation caused by pp32r1Y140H expression to that of the untransduced ACHN cell line, suggesting that CHD4 is the prominent effector of the pp32r1/pp32r1Y140H phenotype.


Assuntos
Autoantígenos , Pontos de Checagem do Ciclo Celular/genética , Peptídeos e Proteínas de Sinalização Intracelular , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Proteínas Nucleares , Fosfoproteínas , Autoantígenos/genética , Autoantígenos/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oncogenes , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA , Proteína Supressora de Tumor p53/metabolismo
11.
Nat Commun ; 14(1): 747, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765044

RESUMO

Nup98 FG repeat domains comprise hydrophobic FG motifs linked through uncharged spacers. FG motifs capture nuclear transport receptors (NTRs) during nuclear pore complex (NPC) passage, confer inter-repeat cohesion, and condense the domains into a selective phase with NPC-typical barrier properties. We show that shortening inter-FG spacers enhances cohesion, increases phase density, and tightens such barrier - all consistent with a sieve-like phase. Phase separation tolerates mutating the Nup98-typical GLFG motifs, provided domain-hydrophobicity remains preserved. NTR-entry, however, is sensitive to (certain) deviations from canonical FG motifs, suggesting co-evolutionary adaptation. Unexpectedly, we observed that arginines promote FG-phase-entry apparently also by hydrophobic interactions/ hydrogen-bonding and not just through cation-π interactions. Although incompatible with NTR·cargo complexes, a YG phase displays remarkable transport selectivity, particularly for engineered GFPNTR-variants. GLFG to FSFG mutations make the FG phase hypercohesive, precluding NTR-entry. Extending spacers relaxes this hypercohesion. Thus, antagonism between cohesion and NTR·FG interactions is key to transport selectivity.


Assuntos
Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/química , Transporte Ativo do Núcleo Celular , Poro Nuclear/metabolismo
12.
Biochim Biophys Acta ; 1810(12): 1294-301, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21749909

RESUMO

BACKGROUND: SECTM1 is a T/NK cell "co-stimulatory" molecule that is expressed in the peripheral blood by neutrophils and monocytes. METHODS: We used qRT-PCR to investigate the mRNA expression of SECTM1 in human monocytic cells after stimulation with interferons and LPS and confirmed the protein expression by flow cytometry. RESULTS: The kinetics of interferon induced SECTM1 mRNA expression in MM6 cells are time dependent occurring rapidly within 3h of stimulation and reaching a maximal level at ~6h for IFN-α and ~12h for IFN-ß and IFN-γ. Co-treatment of MM6 cells with IFN-γ and cycloheximide caused a superinduction of SECTM1 mRNA expression while cycloheximide alone had no effect, illustrating that de novo protein synthesis is not required for IFN-γ enhanced expression of SECTM1 mRNA, a characteristic of IFN early response genes. The kinetics of IFN induced SECTM1 mRNA expression in primary monocytes is comparable although it occurs much quicker with rapid induction by IFN-α, IFN-ß and IFN-γ and maximal levels reached in <6h. Human monocytic cells also displayed a pronounced negative regulation of SECTM1 mRNA expression by LPS, while at the protein level SECTM1 expression was also shown to be regulated by IFN and LPS. Bioinformatic analysis of the SECTM1 promoter region identified STAT1α/GAS, STAT3, ISRE, NFκB and putative p63 binding sites suggesting a complex transcriptional control. This tight regulation of SECTM1 gene expression and rapid upregulation highlights its relevance in the innate immune response. CONCLUSION: Human monocytes produce SECTM1 in response to interferon stimuli that is negatively regulated by LPS. GENERAL SIGNIFICANCE: The level of SECTM1 expression is likely to be a key factor in innate immune responses and in the immune tolerance of cancerous cells.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/fisiologia , Monócitos/efeitos dos fármacos , Linfócitos T/imunologia , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Citometria de Fluxo , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
13.
Immunogenetics ; 64(9): 663-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22706990

RESUMO

Knowledge about the magnitude of individual polymorphism is a critical part in understanding the complexity of comprehensive mismatching. HLA-B*44:09 differs from the highly frequent HLA-B*44:02 allele by amino acid exchanges at residues 77, 80, 81, 82 and 83. We aimed to identify the magnitude of these mismatches on the features of HLA-B*44:09 bound peptides since residues 77, 80 and 81 comprise part of the F pocket which determines sequence specificity at the pΩ position of the peptide. Using soluble HLA technology we determined >200 individual (nonduplicate) self-peptides from HLA-B*44:09 and compared their features with that of the published peptide features of HLA-B*44:02. Both alleles illustrate an anchor motif of E at p2. In contrast to the C-terminal peptide binding motif of B*44:02 (W, F, Y or L), B*44:09-derived peptides are restricted predominantly to L or F. The source of peptides for both alleles is identical (LCL 721.221 cells) allowing us to identify 23 shared peptides. The majority of these peptides however contained the restricted B*44:09 anchor motif of F or L at the pΩ position. Molecular modelling based on the B*44:02 structure highlights that the differences of the C-terminal peptide anchor between both alleles can be explained primarily by the B*44:02(81Ala) > B*44:09(81Leu) polymorphism which restricts the size of the amino acid that can be accommodated in the F pocket of B*44:09. These results highlight that every amino acid substitution has an impact of certain magnitude on the alleles function and demonstrate how surrounding residues orchestrate peptide specificity.


Assuntos
Motivos de Aminoácidos , Aminoácidos/metabolismo , Antígeno HLA-B44/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Sítios de Ligação/genética , Células HEK293 , Antígeno HLA-B44/química , Antígeno HLA-B44/genética , Humanos , Leucina/química , Leucina/genética , Leucina/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/genética , Fenilalanina/química , Fenilalanina/genética , Fenilalanina/metabolismo , Polimorfismo Genético , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
Immunogenetics ; 64(3): 245-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22009320

RESUMO

Position 45 represents a highly polymorphic residue within HLA class I alleles, which contacts the p2 position of bound peptides in 85% of the peptide-HLA structures analyzed, while the neighboring residues 41 and 46 are not involved in peptide binding. To investigate the influence of residue 45 at the functional level, we sequenced peptides eluted from recombinant HLA-B*44:08(41Ala/45Met/46Ala) molecules and compared their features with known peptides from B*44:02(41Thr/45Lys/46Glu). While HLA-B*44:02 has an anchor motif of E at the p2 anchor position, HLA-B*44:08 exhibits Q and L as anchor motif. The 45(Met/Lys) polymorphism contributes to the alteration in the peptide-binding motif and provides further evidence that mismatches at position 45 should be considered as nonpermissive in a transplantation setting.


Assuntos
Antígenos HLA-B/química , Antígenos HLA-B/genética , Peptídeos/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos/imunologia , Antígenos HLA-B/metabolismo , Histocompatibilidade/genética , Histocompatibilidade/imunologia , Humanos , Modelos Moleculares , Peptídeos/metabolismo , Ligação Proteica/imunologia , Conformação Proteica
15.
Haematologica ; 97(1): 98-106, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21993680

RESUMO

BACKGROUND: Polymorphic differences between donor and recipient human leukocyte antigen class I molecules can result in graft-versus-host disease due to distinct peptide presentation. As part of the peptide-loading complex, tapasin plays an important role in selecting peptides from the pool of potential ligands. Class I polymorphisms can significantly alter the tapasin-mediated interaction with the peptide-loading complex and although most class I allotypes are highly dependent upon tapasin, some are able to load peptides independently of tapasin. Several human leukocyte antigen B*44 allotypes differ exclusively at position 156 (B*44:02(156Asp), 44:03(156Leu), 44:28(156Arg), 44:35(156Glu)). From these alleles, only the high tapasin-dependency of human leukocyte antigen B*44:02 has been reported. DESIGN AND METHODS: We investigated the influence of position 156 polymorphisms on both the requirement of tapasin for efficient surface expression of each allotype and their peptide features. Genes encoding human leukocyte antigen B*44 variants bearing all possible substitutions at position 156 were lentivirally transduced into human leukocyte antigen class I-negative LCL 721.221 cells and the tapasin-deficient cell line LCL 721.220. RESULTS: Exclusively human leukocyte antigen B*44:28(156Arg) was expressed on the surface of tapasin-deficient cells, suggesting that the remaining B*44/156 variants are highly tapasin-dependent. Our computational analysis suggests that the tapasin-independence of human leukocyte antigen B*44:28(156Arg) is a result of stabilization of the peptide binding region and generation of a more peptide receptive state. Sequencing of peptides eluted from human leukocyte antigen B*44 molecules by liquid chromatography-electrospray ionization-mass spectrometry (LTQ-Orbitrap) demonstrated that both B*44:02 and B*44:28 share the same overall peptide motif and a certain percentage of their individual peptide repertoires in the presence and/or absence of tapasin. CONCLUSIONS: Here we report for the first time the influence of position 156 on the human leukocyte antigen/tapasin association. Additionally, the results of peptide sequencing suggest that tapasin chaperoning is needed to acquire peptides of unusual length.


Assuntos
Antígeno HLA-B44/genética , Antígeno HLA-B44/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Alelos , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Biologia Computacional/métodos , Epitopos/química , Epitopos/genética , Expressão Gênica , Inativação Gênica , Células HEK293 , Antígeno HLA-B44/química , Humanos , Proteínas de Membrana Transportadoras/genética , Peptídeos/genética , Polimorfismo Genético , Ligação Proteica
16.
Proc Natl Acad Sci U S A ; 106(13): 5082-7, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19289842

RESUMO

Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR(287-302) complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR. However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR(C271A/C283A) mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR(C271A/C283A). Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antineoplásicos/imunologia , Receptores ErbB/imunologia , Proteínas de Neoplasias/imunologia , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antineoplásicos/uso terapêutico , Complexo Antígeno-Anticorpo/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Cristalografia por Raios X , Epitopos , Humanos , Camundongos , Camundongos Nus , Conformação Proteica , Desnaturação Proteica/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Sci Rep ; 12(1): 16430, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180492

RESUMO

The Cafeteria roenbergensis virus (Crov), Dictyostelium, and other species encode a large family of leucine-rich repeat (LRR) proteins with FGxxFN motifs. We determined the structures of two of them and observed several unique structural features that set them aside from previously characterized LRR family members. Crov588 comprises 25 regular repeats with a LxxLxFGxxFNQxIxENVLPxx consensus, forming a unique closed circular repeat structure. Novel features include a repositioning of a conserved asparagine at the middle of the repeat, a double phenylalanine spine that generates an alternate core packing arrangement, and a histidine/tyrosine ladder on the concave surface. Crov539 is smaller, comprising 12 repeats of a similar LxxLxFGxxFNQPIExVxW/LPxx consensus and forming an unusual cap-swapped dimer structure. The phenylalanine spine of Crov539 is supplemented with a tryptophan spine, while a hydrophobic isoleucine-rich patch is found on the central concave surface. We present a detailed analysis of the structures of Crov588 and Crov539 and compare them to related repeat proteins and other LRR classes.


Assuntos
Dictyostelium , Proteínas de Repetições Ricas em Leucina , Sequência de Aminoácidos , Asparagina , Histidina , Isoleucina , Leucina/química , Fenilalanina , Triptofano , Tirosina
18.
Nat Commun ; 13(1): 1174, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246520

RESUMO

Mechanical forces regulate multiple essential pathways in the cell. The nuclear translocation of mechanoresponsive transcriptional regulators is an essential step for mechanotransduction. However, how mechanical forces regulate the nuclear import process is not understood. Here, we identify a highly mechanoresponsive nuclear transport receptor (NTR), Importin-7 (Imp7), that drives the nuclear import of YAP, a key regulator of mechanotransduction pathways. Unexpectedly, YAP governs the mechanoresponse of Imp7 by forming a YAP/Imp7 complex that responds to mechanical cues through the Hippo kinases MST1/2. Furthermore, YAP behaves as a dominant cargo of Imp7, restricting the Imp7 binding and the nuclear translocation of other Imp7 cargoes such as Smad3 and Erk2. Thus, the nuclear import process is an additional regulatory layer indirectly regulated by mechanical cues, which activate a preferential Imp7 cargo, YAP, which competes out other cargoes, resulting in signaling crosstalk.


Assuntos
Núcleo Celular , Mecanotransdução Celular , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
19.
Haematologica ; 96(1): 110-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20934997

RESUMO

BACKGROUND: Polymorphic differences between human leukocyte antigen (HLA) molecules affect the specificity and conformation of their bound peptides and lead to differential selection of the T-cell repertoire. Mismatching during allogeneic transplantation can, therefore, lead to immunological reactions. DESIGN AND METHODS: We investigated the structure-function relationships of six members of the HLA-B*41 allelic group that differ by six polymorphic amino acids, including positions 80, 95, 97 and 114 within the antigen-binding cleft. Peptide-binding motifs for B*41:01, *41:02, *41:03, *41:04, *41:05 and *41:06 were determined by sequencing self-peptides from recombinant B*41 molecules by electrospray ionization tandem mass spectrometry. The crystal structures of HLA-B*41:03 bound to a natural 16-mer self-ligand (AEMYGSVTEHPSPSPL) and HLA-B*41:04 bound to a natural 11-mer self-ligand (HEEAVSVDRVL) were solved. RESULTS: Peptide analysis revealed that all B*41 alleles have an identical anchor motif at peptide position 2 (glutamic acid), but differ in their choice of C-terminal pΩ anchor (proline, valine, leucine). Additionally, B*41:04 displayed a greater preference for long peptides (>10 residues) when compared to the other B*41 allomorphs, while the longest peptide to be eluted from the allelic group (a 16mer) was obtained from B*41:03. The crystal structures of HLA-B*41:03 and HLA-B*41:04 revealed that both alleles interact in a highly conserved manner with the terminal regions of their respective ligands, while micropolymorphism-induced changes in the steric and electrostatic properties of the antigen-binding cleft account for differences in peptide repertoire and auxiliary anchoring. CONCLUSIONS: Differences in peptide repertoire, and peptide length specificity reflect the significant functional evolution of these closely related allotypes and signal their importance in allogeneic transplantation, especially B*41:03 and B*41:04, which accommodate longer peptides, creating structurally distinct peptide-HLA complexes.


Assuntos
Epitopos de Linfócito T/genética , Antígenos HLA-B/genética , Fragmentos de Peptídeos/imunologia , Polimorfismo de Nucleotídeo Único/genética , Proteínas Recombinantes/genética , Antígenos HLA-B/química , Antígenos HLA-B/metabolismo , Humanos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Linfócitos T Citotóxicos/imunologia
20.
Haematologica ; 95(8): 1373-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20220067

RESUMO

BACKGROUND: The functional integrity of human leukocyte antigen low expression variants is a prerequisite for considering them as essential in the matching process of hematopoietic stem cell donors and recipients to diminish the risk of serious complications such as graft-versus-host disease or graft rejection. The HLA-A*3014L variant has a disulfide bridge missing in the alpha2 domain which could affect peptide binding and presentation to T cells. DESIGN AND METHODS: HLA-A*3014L and HLA-A*3001 were expressed as truncated variants and peptides were eluted and subjected to pool sequencing by Edman degradation as well as to single-peptide sequencing by mass spectrometry. Quantitative analysis of binding peptides presented in vivo was performed by a flow cytometric peptide-binding assay using HLA-A*3001 and HLA-A*3014L-expressing B-LCLs. RESULTS: The truncated HLA-A*3014L protein was secreted in the supernatant and it was possible to elute and sequence peptides. Sequence analysis of these eluted peptides revealed no relevant differences to the peptide motif of HLA-A*3001, indicating that the Cys164Ser substitution does not substantially alter the spectrum of presented peptides. Strong binding of one of the shared in vivo identified HLA-A*3001/3014L ligands was confirmed in the peptide-binding assay. CONCLUSIONS: This study is the first to demonstrate that HLA low expression variants are able to present peptides and, thus, can be considered as functionally active. When comparing peptide motifs, it is likely that HLA-A*3014L and HLA-A*3001 represent a permissive mismatch with low allogenicity in hematopoietic stem cell transplantation. These results indicate that surface expression, as well as peptide-binding data of HLA variants with similar disulfide bridge variations (e.g. HLA-A*3211Q) need to be considered as functionally active in an allogeneic hematopoietic stem cell transplantation setting as long as the opposite has not been shown. Otherwise a relevant but not considered HLA mismatch could result in a severe allogeneic T-cell response and graft-versus-host disease.


Assuntos
Alelos , Motivos de Aminoácidos/genética , Antígenos HLA-A/genética , Peptídeos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação/genética , Expressão Gênica , Células HEK293 , Antígenos HLA-A/metabolismo , Humanos , Espectrometria de Massas , Modelos Moleculares , Mutagênese , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA