Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Plant J ; 115(2): 563-576, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37058128

RESUMO

An Arabidopsis mutant displaying impaired stomatal responses to CO2 , cdi4, was isolated by a leaf thermal imaging screening. The mutated gene PECT1 encodes CTP:phosphorylethanolamine cytidylyltransferase. The cdi4 exhibited a decrease in phosphatidylethanolamine levels and a defect in light-induced stomatal opening as well as low-CO2 -induced stomatal opening. We created RNAi lines in which PECT1 was specifically repressed in guard cells. These lines are impaired in their stomatal responses to low-CO2 concentrations or light. Fungal toxin fusicoccin (FC) promotes stomatal opening by activating plasma membrane H+ -ATPases in guard cells via phosphorylation. Arabidopsis H+ -ATPase1 (AHA1) has been reported to be highly expressed in guard cells, and its activation by FC induces stomatal opening. The cdi4 and PECT1 RNAi lines displayed a reduced stomatal opening response to FC. However, similar to in the wild-type, cdi4 maintained normal levels of phosphorylation and activation of the stomatal H+ -ATPases after FC treatment. Furthermore, the cdi4 displayed normal localization of GFP-AHA1 fusion protein and normal levels of AHA1 transcripts. Based on these results, we discuss how PECT1 could regulate CO2 - and light-induced stomatal movements in guard cells in a manner that is independent and downstream of the activation of H+ -ATPases. [Correction added on 15 May 2023, after first online publication: The third sentence is revised in this version.].


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Fosfatidiletanolaminas/metabolismo , Estômatos de Plantas/metabolismo , Adenosina Trifosfatases/metabolismo , Luz , ATPases Translocadoras de Prótons/metabolismo
2.
Plant J ; 110(2): 440-451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35061307

RESUMO

Regulating the stomatal aperture to adapt to environmental changes is critical for plants as stomatal guard cells are responsible for gas exchange between plants and the atmosphere. We previously showed that a plant-specific DNA-binding with one finger (Dof)-type transcription factor, SCAP1, functions as a key regulator in the final stages of guard cell differentiation. In the present study, we performed deletion and gain-of-function analyses with the 5' flanking region of SCAP1 to identify the regulatory region controlling the guard cell-specific expression of SCAP1. The results revealed that two cis-acting elements, 5'-CACGAGA-3' and 5'-CACATGTTTCCC-3', are crucial for the guard cell-specific expression of SCAP1. Consistently, when an 80-bp promoter region including these two cis-elements was fused to a gene promoter that is not active in guard cells, it functioned as a promoter that directed gene expression in guard cells. Furthermore, the promoter region of HT1 encoding the central regulator of stomatal CO2 signaling was also found to contain a 5'-CACGAGA-3' sequence, which was confirmed to function as a cis-element necessary for guard cell-specific expression of HT1. These findings suggest the existence of a novel transcriptional regulatory mechanism that synchronously promotes the expression of multiple genes required for the stomatal maturation and function.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Estômatos de Plantas/fisiologia , Regiões Promotoras Genéticas/genética
3.
Plant Cell Physiol ; 63(7): 919-931, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35428891

RESUMO

Guanosine tetraphosphate (ppGpp) is known as an alarmone that mediates bacterial stress responses. In plants, ppGpp is synthesized in chloroplasts from GTP and ATP and functions as a regulator of chloroplast gene expression to affect photosynthesis and plant growth. This observation indicates that ppGpp metabolism is closely related to chloroplast function, but the regulation of ppGpp and its role in chloroplast differentiation are not well understood. In rice, ppGpp directly inhibits plastidial guanylate kinase (GKpm), a key enzyme in GTP biosynthesis. GKpm is highly expressed during early leaf development in rice, and the GKpm-deficient mutant, virescent-2 (v2), develops chloroplast-deficient chlorotic leaves under low-temperature conditions. To examine the relationship between GTP synthesis and ppGpp homeostasis, we generated transgenic rice plants over-expressing RSH3, a protein known to act as a ppGpp synthase. When RSH3 was overexpressed in v2, the leaf chlorosis was more severe. Although the RSH3 overexpression in the wild type caused no visible effects, pulse amplitude modulation fluorometer measurements indicated that photosynthetic rates were reduced in this line. This finding implies that the regulation of ppGpp synthesis in rice is involved in the maintenance of the GTP pool required to regulate plastid gene expression during early chloroplast biogenesis. We further investigated changes in the expressions of RelA/SpoT Homolog (RSH) genes encoding ppGpp synthases and hydrolases during the same period. Comparing the expression of these genes with the cellular ppGpp content suggests that the basal ppGpp level is determined by the antagonistic action of multiple RSH enzymatic activities during early leaf development in rice.


Assuntos
Guanosina Tetrafosfato , Oryza , Cloroplastos/metabolismo , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Guanosina Trifosfato/metabolismo , Ligases/metabolismo , Oryza/genética , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
4.
Plant Cell Physiol ; 62(3): 494-501, 2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-33493295

RESUMO

Chloroplast lipids are synthesized via two distinct pathways: the plastidic pathway and endoplasmic reticulum (ER) pathway. We previously reported that the contribution of the two pathways toward chloroplast development is different between mesophyll cells and guard cells in Arabidopsis leaf tissues and that the ER pathway plays a major role in guard cell chloroplast development. However, little is known about the contribution of the two pathways toward chloroplast development in other tissue cells, and in this study, we focused on root cells. Chloroplast development is normally repressed in roots but can be induced when the roots are detached from the shoots (root greening). We found that, similar to guard cells, root cells exhibit a higher proportion of glycolipid from the ER pathway. Root greening was repressed in the gles1 mutant, which has a defect in ER-to-plastid lipid transportation via the ER pathway, while normal root greening was observed in the ats1 mutant, whose plastidic pathway is blocked. Lipid analysis revealed that the gles1 mutation caused drastic decrease in the ER-derived glycolipids in roots. Furthermore, the gles1 detached roots showed smaller chloroplasts containing less starch than WT. These results suggest that the ER pathway has a significant contribution toward chloroplast development in the root cells.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Retículo Endoplasmático/metabolismo , Lipídeos de Membrana/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Arabidopsis/crescimento & desenvolvimento , Glicolipídeos/metabolismo , Lipídeos de Membrana/biossíntese , Redes e Vias Metabólicas , Fotossíntese , Tilacoides/metabolismo
5.
Plant Physiol ; 184(4): 1917-1926, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32994218

RESUMO

Carbon dioxide (CO2) is an essential substrate for photosynthesis in plants. CO2 is absorbed mainly through the stomata in land plants because all other aerial surfaces are covered by a waxy layer called the cuticle. The cuticle is an important barrier that protects against extreme water loss; however, this anaerobic layer limits CO2 uptake. Simply, in the process of adapting to a terrestrial environment, plants have acquired drought tolerance in exchange for reduced CO2 uptake efficiency. To evaluate the extent to which increased cuticle permeability enhances CO2 uptake efficiency, we investigated the CO2 assimilation rate, carbon content, and dry weight of the Arabidopsis (Arabidopsis thaliana) mutant excessive transpiration1 (extra1), whose cuticle is remarkably permeable to water vapor. We isolated the mutant as a new allele of ACETYL-COA CARBOXYLASE1, encoding a critical enzyme for fatty acid synthesis, thereby affecting cuticle wax synthesis. Under saturated water vapor conditions, the extra1 mutant demonstrated a higher CO2 assimilation rate, carbon content, and greater dry weight than did the wild-type plant. On the other hand, the stomatal mutant slow-type anion channel-associated1, whose stomata are continuously open, also exhibited a higher CO2 assimilation rate than the wild-type plant; however, the increase was only half of the amount exhibited by extra1 These results indicate that the efficiency of CO2 uptake via a permeable cuticle is greater than the efficiency via stomata and confirm that land plants suffer a greater loss of CO2 uptake efficiency by developing a cuticle barrier.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Dióxido de Carbono/fisiologia , Permeabilidade , Estômatos de Plantas/fisiologia , Transpiração Vegetal/genética , Transpiração Vegetal/fisiologia , Ceras , Acetilcoenzima A/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação , Folhas de Planta/fisiologia , Estômatos de Plantas/genética
6.
Proc Natl Acad Sci U S A ; 115(36): 9038-9043, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127035

RESUMO

Stomatal guard cells develop unique chloroplasts in land plant species. However, the developmental mechanisms and function of chloroplasts in guard cells remain unclear. In seed plants, chloroplast membrane lipids are synthesized via two pathways: the prokaryotic and eukaryotic pathways. Here we report the central contribution of endoplasmic reticulum (ER)-derived chloroplast lipids, which are synthesized through the eukaryotic lipid metabolic pathway, in the development of functional guard cell chloroplasts. We gained insight into this pathway by isolating and examining an Arabidopsis mutant, gles1 (green less stomata 1), which had achlorophyllous stomatal guard cells and impaired stomatal responses to CO2 and light. The GLES1 gene encodes a small glycine-rich protein, which is a putative regulatory component of the trigalactosyldiacylglycerol (TGD) protein complex that mediates ER-to-chloroplast lipid transport via the eukaryotic pathway. Lipidomic analysis revealed that in the wild type, the prokaryotic pathway is dysfunctional, specifically in guard cells, whereas in gles1 guard cells, the eukaryotic pathway is also abrogated. CO2-induced stomatal closing and activation of guard cell S-type anion channels that drive stomatal closure were disrupted in gles1 guard cells. In conclusion, the eukaryotic lipid pathway plays an essential role in the development of a sensing/signaling machinery for CO2 and light in guard cell chloroplasts.


Assuntos
Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Luz , Metabolismo dos Lipídeos/fisiologia , Estômatos de Plantas/metabolismo , Transdução de Sinais/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico Ativo/fisiologia , Cloroplastos/genética , Mutação , Estômatos de Plantas/genética
7.
Plant Cell Environ ; 43(5): 1230-1240, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31990076

RESUMO

A close correlation between stomatal conductance and the steady-state photosynthetic rate has been observed for diverse plant species under various environmental conditions. However, it remains unclear whether stomatal conductance is a major limiting factor for the photosynthetic rate under naturally fluctuating light conditions. We analysed a SLAC1 knockout rice line to examine the role of stomatal conductance in photosynthetic responses to fluctuating light. SLAC1 encodes a stomatal anion channel that regulates stomatal closure. Long exposures to weak light before treatments with strong light increased the photosynthetic induction time required for plants to reach a steady-state photosynthetic rate and also induced stomatal limitation of photosynthesis by restricting the diffusion of CO2 into leaves. The slac1 mutant exhibited a significantly higher rate of stomatal opening after an increase in irradiance than wild-type plants, leading to a higher rate of photosynthetic induction. Under natural conditions, in which irradiance levels are highly variable, the stomata of the slac1 mutant remained open to ensure efficient photosynthetic reaction. These observations reveal that stomatal conductance is important for regulating photosynthesis in rice plants in the natural environment with fluctuating light.


Assuntos
Oryza/metabolismo , Fotossíntese , Estômatos de Plantas/metabolismo , Clorofila/metabolismo , Técnicas de Inativação de Genes , Luz , Nitrogênio/metabolismo , Oryza/fisiologia , Oryza/efeitos da radiação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Ribulose-Bifosfato Carboxilase/metabolismo
8.
J Exp Bot ; 71(7): 2339-2350, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32095822

RESUMO

It has been reported that stomatal conductance often limits the steady-state photosynthetic rate. On the other hand, the stomatal limitation of photosynthesis in fluctuating light remains largely unknown, although in nature light fluctuates due to changes in sun position, cloud cover, and the overshadowing canopy. In this study, we analysed three mutant lines of Arabidopsis with increased stomatal conductance to examine to what extent stomatal opening limits photosynthesis in fluctuating light. The slac1 (slow anion channel-associated 1) and ost1 (open stomata 1) mutants with stay-open stomata, and the PATROL1 (proton ATPase translocation control 1) overexpression line with faster stomatal opening responses exhibited higher photosynthetic rates and plant growth in fluctuating light than the wild-type, whereas these four lines showed similar photosynthetic rates and plant growth in constant light. The slac1 and ost1 mutants tended to keep their stomata open in fluctuating light, resulting in lower water-use efficiency (WUE) than the wild-type. However, the PATROL1 overexpression line closed stomata when needed and opened stomata immediately upon irradiation, resulting in similar WUE to the wild-type. The present study clearly shows that there is room to optimize stomatal responses, leading to greater photosynthesis and biomass accumulation in fluctuating light in nature.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biomassa , Dióxido de Carbono , Luz , Fotossíntese , Estômatos de Plantas
9.
Plant Cell ; 28(2): 557-67, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764376

RESUMO

The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dióxido de Carbono/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Substituição de Aminoácidos , Arabidopsis/citologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Estômatos de Plantas/metabolismo , Plantas Geneticamente Modificadas
10.
Plant Cell Physiol ; 58(12): 2085-2094, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29040767

RESUMO

Rice production depends on water availability and carbon fixation by photosynthesis. Therefore, optimal control of stomata, which regulate leaf transpiration and CO2 absorption, is important for high productivity. SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) is an S-type anion channel protein that controls stomatal closure in response to elevated CO2. Rice slac1 mutants showed significantly increased stomatal conductance (gs) and enhanced CO2 assimilation. To discern the contribution of stomatal regulation to rice growth, we compared gs in the wild type (WT) and two mutants, slac1 and the dominant-positive mutant SLAC1-F461A, which expresses a point mutation causing an amino acid substitution (F461A) in SLAC1, at different growth stages. Because the side group of F461 is estimated to function as the channel gate, stomata in the SLAC1-F461A mutant are expected to close constitutively. All three lines had maximum gs during the tillering stage, when the gs values were 50% higher in slac1 and 70% lower in SLAC1-F461A, compared with the WT. At the tillering stage, the gs values were highest in the first leaves at the top of the stem and lower in the second and third leaves in all three lines. Both slac1 and SLAC1-F461A retained the ability to change gs in response to the day-night cycle, and showed differences in tillering rate and plant height compared with the WT, and lower grain yield. These observations show that SLAC1 plays a crucial role in regulating stomata in rice at the tillering stage.


Assuntos
Canais Iônicos/metabolismo , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Ritmo Circadiano , Canais Iônicos/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/crescimento & desenvolvimento
11.
Plant Physiol ; 170(3): 1435-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26754665

RESUMO

The rate of gas exchange in plants is regulated mainly by stomatal size and density. Generally, higher densities of smaller stomata are advantageous for gas exchange; however, it is unclear what the effect of an extraordinary change in stomatal size might have on a plant's gas-exchange capacity. We investigated the stomatal responses to CO2 concentration changes among 374 Arabidopsis (Arabidopsis thaliana) ecotypes and discovered that Mechtshausen (Me-0), a natural tetraploid ecotype, has significantly larger stomata and can achieve a high stomatal conductance. We surmised that the cause of the increased stomatal conductance is tetraploidization; however, the stomatal conductance of another tetraploid accession, tetraploid Columbia (Col), was not as high as that in Me-0. One difference between these two accessions was the size of their stomatal apertures. Analyses of abscisic acid sensitivity, ion balance, and gene expression profiles suggested that physiological or genetic factors restrict the stomatal opening in tetraploid Col but not in Me-0. Our results show that Me-0 overcomes the handicap of stomatal opening that is typical for tetraploids and achieves higher stomatal conductance compared with the closely related tetraploid Col on account of larger stomatal apertures. This study provides evidence for whether larger stomatal size in tetraploids of higher plants can improve stomatal conductance.


Assuntos
Arabidopsis/anatomia & histologia , Arabidopsis/genética , Estômatos de Plantas/anatomia & histologia , Tetraploidia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Diploide , Ecótipo , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Estômatos de Plantas/metabolismo
12.
J Exp Bot ; 67(11): 3251-61, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27034327

RESUMO

HT1 (HIGH LEAF TEMPERATURE 1) is the first component associated with changes in stomatal aperture in response to CO2 to be isolated by forward genetic screening. The HT1 gene encodes a protein kinase expressed mainly in guard cells. The loss-of-function ht1-1 and ht1-2 mutants in Arabidopsis thaliana have CO2-hypersensitive stomatal closure with concomitant reductions in their kinase activities in vitro In addition to these mutants, in this study we isolate or obtaine five new ht1 alleles (ht1-3, ht1-4, ht1-5, ht1-6, and ht1-7). Among the mutants, only ht1-3 has a dominant mutant phenotype and has widely opened stomata due to CO2 insensitivity. The ht1-3 mutant has a missense mutation affecting a non-conserved residue (R102K), whereas the other six recessive mutants have mutations in highly conserved residues in the catalytic domains required for kinase activity. We found that the dominant mutation does not affect the expression of HT1 or the ability to phosphorylate casein, a universal kinase substrate, but it does affect autophosphorylation activity in vitro A 3D structural model of HT1 also shows that the R102 residue protrudes from the surface of the kinase, implying a role for the formation of oligomers and/or interaction with its targets. We demonstrate that both the loss-of-function and gain-of-function ht1 mutants have completely disrupted CO2 responses, although they have normal responses to ABA. Furthermore, light-induced stomatal opening is smaller in ht1-3 and much smaller in ht1-2 Taken together, these results indicate that HT1 is a critical regulator for CO2 signaling and is partially involved in the light-induced stomatal opening pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Mutação , Proteínas de Plantas/genética , Proteínas Quinases/genética , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estômatos de Plantas/enzimologia , Estômatos de Plantas/fisiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Alinhamento de Sequência
13.
J Biol Chem ; 289(22): 15631-41, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24722991

RESUMO

The guanosine 3',5'-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 µM relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 µM. The IC50 of ppGpp for GKpm was ∼10 µM. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp.


Assuntos
Bactérias/enzimologia , Cloroplastos/enzimologia , Guanosina Tetrafosfato/metabolismo , Guanilato Quinases/metabolismo , Ligases/metabolismo , Plantas/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bactérias/genética , Sequência de Bases , Cloroplastos/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Guanilato Quinases/genética , Ligases/genética , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/genética , Pisum sativum/enzimologia , Pisum sativum/genética , Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Synechococcus/enzimologia , Synechococcus/genética
14.
New Phytol ; 208(4): 1126-37, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26192339

RESUMO

The question of whether red light-induced stomatal opening is mediated by a photosynthesis-derived reduction in intercellular [CO2 ] (Ci ) remains controversial and genetic analyses are needed. The Arabidopsis thaliana protein kinase HIGH TEMPERATURE 1 (HT1) is a negative regulator of [CO2 ]-induced stomatal closing and ht1-2 mutant plants do not show stomatal opening to low [CO2 ]. The protein kinase mutant ost1-3 exhibits slowed stomatal responses to CO2 . The functions of HT1 and OPEN STOMATA 1 (OST1) to changes in red, blue light or [CO2 ] were analyzed. For comparison we assayed recessive ca1ca4 carbonic anhydrase double mutant plants, based on their slowed stomatal response to CO2 . Here, we report a strong impairment in ht1 in red light-induced stomatal opening whereas blue light was able to induce stomatal opening. The effects on photosynthetic performance in ht1 were restored when stomatal limitation of CO2 uptake, by control of [Ci ], was eliminated. HT1 was found to interact genetically with OST1 both during red light- and low [CO2 ]-induced stomatal opening. Analyses of ca1ca4 plants suggest that more than a low [Ci ]-dependent pathway may function in red light-induced stomatal opening. These results demonstrate that HT1 is essential for red light-induced stomatal opening and interacts genetically with OST1 during stomatal responses to red light and altered [CO2 ].


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Dióxido de Carbono/metabolismo , Genes de Plantas , Luz , Fotossíntese/genética , Estômatos de Plantas , Proteínas Quinases/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mutação , Proteínas Quinases/metabolismo , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 109(26): 10593-8, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689970

RESUMO

The plant hormone abscisic acid (ABA) is produced in response to abiotic stresses and mediates stomatal closure in response to drought via recently identified ABA receptors (pyrabactin resistance/regulatory component of ABA receptor; PYR/RCAR). SLAC1 encodes a central guard cell S-type anion channel that mediates ABA-induced stomatal closure. Coexpression of the calcium-dependent protein kinase 21 (CPK21), CPK23, or the Open Stomata 1 kinase (OST1) activates SLAC1 anion currents. However, reconstitution of ABA activation of any plant ion channel has not yet been attained. Whether the known core ABA signaling components are sufficient for ABA activation of SLAC1 anion channels or whether additional components are required remains unknown. The Ca(2+)-dependent protein kinase CPK6 is known to function in vivo in ABA-induced stomatal closure. Here we show that CPK6 robustly activates SLAC1-mediated currents and phosphorylates the SLAC1 N terminus. A phosphorylation site (S59) in SLAC1, crucial for CPK6 activation, was identified. The group A PP2Cs ABI1, ABI2, and PP2CA down-regulated CPK6-mediated SLAC1 activity in oocytes. Unexpectedly, ABI1 directly dephosphorylated the N terminus of SLAC1, indicating an alternate branched early ABA signaling core in which ABI1 targets SLAC1 directly (down-regulation). Furthermore, here we have successfully reconstituted ABA-induced activation of SLAC1 channels in oocytes using the ABA receptor pyrabactin resistant 1 (PYR1) and PP2C phosphatases with two alternate signaling cores including either CPK6 or OST1. Point mutations in ABI1 disrupting PYR1-ABI1 interaction abolished ABA signal transduction. Moreover, by addition of CPK6, a functional ABA signal transduction core from ABA receptors to ion channel activation was reconstituted without a SnRK2 kinase.


Assuntos
Ácido Abscísico/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Canais Iônicos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Animais , Regulação para Baixo , Xenopus laevis
16.
Plant Cell Physiol ; 55(2): 241-50, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24104052

RESUMO

CO2 acts as an environmental signal that regulates stomatal movements. High CO2 concentrations reduce stomatal aperture, whereas low concentrations trigger stomatal opening. In contrast to our advanced understanding of light and drought stress responses in guard cells, the molecular mechanisms underlying stomatal CO2 sensing and signaling are largely unknown. Leaf temperature provides a convenient indicator of transpiration, and can be used to detect mutants with altered stomatal control. To identify genes that function in CO2 responses in guard cells, CO2-insensitive mutants were isolated through high-throughput leaf thermal imaging. The isolated mutants are categorized into three groups according to their phenotypes: (i) impaired in stomatal opening under low CO2 concentrations; (ii) impaired in stomatal closing under high CO2 concentrations; and (iii) impaired in stomatal development. Characterization of these mutants has begun to yield insights into the mechanisms of stomatal CO2 responses. In this review, we summarize the current status of the field and discuss future prospects.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Proteínas de Membrana/metabolismo , Estômatos de Plantas/fisiologia , Transdução de Sinais , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Secas , Luz , Proteínas de Membrana/genética , Modelos Biológicos , Mutação , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/efeitos da radiação , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Temperatura , Termografia
17.
Plant Cell Physiol ; 55(4): 773-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24163289

RESUMO

The Arabidopsis stomatal complex is composed of a pair of guard cells and surrounding anisocytic subsidiary cells. Subsidiary cells are thought to function as a supplier and receiver of bulk water and ions, and to assist turgor-driven stomatal movement, but the molecular mechanisms are largely unknown. In this work, we studied the dynamic behavior and environmental responses of PATROL1, which has been identified as a translocation factor of the plasma membrane proton pump ATPase (PM H(+)-ATPase) AHA1 in guard cells and subsidiary cells in Arabidopsis thaliana. Variable-angle epifluorescence microscopic observation revealed that green fluorescent protein (GFP)-PATROL1 localized on dot-like compartments that resided on plasma membranes for several seconds. The GFP-PATROL1-labeled dots were sensitive to phosphatidylinositol 4-kinase inhibitors but not to a phosphatidylinositol 3-kinase inhibitor. GFP-PATROL1 and red fluorescent protein (RFP)-AHA1 co-localized in hyperosmotic conditions, and a mutation of PATROL1 resulted in an increase in GFP-AHA1 internalization, suggesting a role in the translocation of PM H(+)-ATPase in subsidiary cells. Interestingly, subsidiary cells showed changes in localization of GFP-PATROL1 in response to environmental stimuli that were opposite to those in guard cells. Our observations suggested that PATROL1 may contribute to stomatal movement by translocations of PM H(+)-ATPase in subsidiary cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Meio Ambiente , Ácido Abscísico/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Antígenos de Histocompatibilidade Menor , Modelos Biológicos , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Estômatos de Plantas/citologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
18.
Nature ; 452(7186): 483-6, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18305482

RESUMO

The continuing rise in atmospheric [CO2] is predicted to have diverse and dramatic effects on the productivity of agriculture, plant ecosystems and gas exchange. Stomatal pores in the epidermis provide gates for the exchange of CO2 and water between plants and the atmosphere, processes vital to plant life. Increased [CO2] has been shown to enhance anion channel activity proposed to mediate efflux of osmoregulatory anions (Cl- and malate(2-)) from guard cells during stomatal closure. However, the genes encoding anion efflux channels in plant plasma membranes remain unknown. Here we report the isolation of an Arabidopsis gene, SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1, At1g12480), which mediates CO2 sensitivity in regulation of plant gas exchange. The SLAC1 protein is a distant homologue of bacterial and fungal C4-dicarboxylate transporters, and is localized specifically to the plasma membrane of guard cells. It belongs to a protein family that in Arabidopsis consists of four structurally related members that are common in their plasma membrane localization, but show distinct tissue-specific expression patterns. The loss-of-function mutation in SLAC1 was accompanied by an over-accumulation of the osmoregulatory anions in guard cell protoplasts. Guard-cell-specific expression of SLAC1 or its family members resulted in restoration of the wild-type stomatal responses, including CO2 sensitivity, and also in the dissipation of the over-accumulated anions. These results suggest that SLAC1-family proteins have an evolutionarily conserved function that is required for the maintenance of organic/inorganic anion homeostasis on the cellular level.


Assuntos
Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Escuridão , Regulação da Expressão Gênica de Plantas , Transporte de Íons , Proteínas de Membrana/genética , Família Multigênica , Mutação/genética , Especificidade de Órgãos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação
19.
Nat Cell Biol ; 8(4): 391-7, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16518390

RESUMO

Guard cells, which form stomata in leaf epidermes, sense a multitude of environmental signals and integrate this information to regulate stomatal movements. Compared with the advanced understanding of light and water stress responses in guard cells, the molecular mechanisms that underlie stomatal CO(2) signalling have remained relatively obscure. With a high-throughput leaf thermal imaging CO(2) screen, we report the isolation of two allelic Arabidopsis mutants (high leaf temperature 1; ht1-1 and ht1-2) that are altered in their ability to control stomatal movements in response to CO(2). The strong allele, ht1-2, exhibits a markedly impaired CO(2) response but shows functional responses to blue light, fusicoccin and abscisic acid (ABA), indicating a role for HT1 in stomatal CO(2) signalling. HT1 encodes a protein kinase that is expressed mainly in guard cells. Phosphorylation assays demonstrate that the activity of the HT1 protein carrying the ht1-1 or ht1-2 mutation is greatly impaired or abolished, respectively. Furthermore, dominant-negative HT1(K113W) transgenic plants, which lack HT1 kinase activity, show a disrupted CO(2) response. These findings indicate that the HT1 kinase is important for regulation of stomatal movements and its function is more pronounced in response to CO(2) than it is to ABA or light.


Assuntos
Arabidopsis/enzimologia , Dióxido de Carbono/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Ácido Abscísico/farmacologia , Genes Dominantes , Glicosídeos/farmacologia , Luz , Mutação , Fosforilação , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais
20.
Plant J ; 68(6): 1039-50, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21981410

RESUMO

During early chloroplast differentiation, the regulation of the plastid genetic system including transcription and translation differs greatly from that in the mature chloroplast, suggesting the existence of a stage-dependent mechanism that regulates the chloroplast genetic system during this period. The virescent-1 (v(1)) mutant of rice (Oryza sativa) is temperature-conditional and develops chlorotic leaves under low-temperature conditions. We reported previously that leaf chlorosis in the v(1) mutant is caused by blockage of the activation of the chloroplast genetic system during early leaf development. Here we identify the V(1) gene, which encodes a chloroplast-localized protein NUS1. Accumulation of NUS1 specifically occurred in the pre-emerged immature leaves, and is enhanced by low-temperature treatment. The C-terminus of NUS1 shows structural similarity to the bacterial antitermination factor NusB, which is known to play roles in the regulation of ribosomal RNA transcription. The RNA-immunoprecipitation and gel mobility shift assays indicated that NUS1 binds to several regions of chloroplast RNA including the upstream leader region of the 16S rRNA precursor. In the leaves of the NUS1-deficient mutant, accumulation of chloroplast rRNA during early leaf development was impaired and chloroplast translation/transcription capacity was severely suppressed under low temperature. Our results suggest that NUS1 is involved in the regulation of chloroplast RNA metabolism and promotes the establishment of the plastid genetic system during early chloroplast development under cold stress conditions.


Assuntos
Arabidopsis/genética , Cloroplastos/genética , Genes de Plantas , Oryza/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Plastídeos/genética , Proteínas de Ligação a RNA/metabolismo , Cloroplastos/fisiologia , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Oryza/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA de Cloroplastos/metabolismo , Proteínas de Ligação a RNA/química , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA