Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Physiol Plant ; 165(3): 524-536, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29660140

RESUMO

Time courses of photochemical reflectance index (PRI) of an attached cucumber leaf during a dark-light transition were compared with those of photochemical yields of photosystem II (YII ) to discuss the feasibility of PRI imaging for estimating the efficiency of photosynthetic light use. YII and PRI were simultaneously evaluated with a pulse-amplitude modulation chlorophyll fluorometer and a low-cost imaging system consisting of digital cameras and band-pass filters, respectively. YII decreased immediately after the transition and then increased under various photon flux densities. Although PRI exhibited delayed time courses with respect to YII under low light conditions, PRI decreased monotonically under high light conditions. There was no correlation between YII and the changes in PRI (ΔPRI) immediately after the transition but YII was correlated with ΔPRI under the steady-state photosynthesis. These results indicate that the use of PRI to estimate YII under fluctuating light based on the regression obtained at steady state can overestimate YII . The imaging system was also applied to evaluate the spatial PRI distribution within a leaf. While PRI of leaf areas that remained untreated, or had been treated with H2 O again, first dropped and then rose under low light and monotonically decreased under high light conditions, leaf areas treated with inhibitor (dichlorophenyl dimethylurea) did not exhibit any changes. It is likely that the inhibitor suppressed lumen acidification, which triggers a decrease in PRI. It was suggested that YII of leaves with malfunctions in the photosynthetic electron transport can be overestimated by the PRI-based estimation.


Assuntos
Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/fisiologia , Folhas de Planta/metabolismo
2.
Plants (Basel) ; 10(9)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34579376

RESUMO

Crop production under hydroponic environments has many advantages, yet the effects of solution flow rate on plant growth remain unclear. We conducted a hydroponic cultivation study using different flow rates under light-emitting diode lighting to investigate plant growth, nutrient uptake, and root morphology under different flow rates. Swiss chard plants were grown hydroponically under four nutrient solution flow rates (2 L/min, 4 L/min, 6 L/min, and 8 L/min). After 21 days, harvested plants were analyzed for root and shoot fresh weight, root and shoot dry weight, root morphology, and root cellulose and hemicellulose content. We found that suitable flow rates, acting as a eustress, gave the roots appropriate mechanical stimulation to promote root growth, absorb more nutrients, and increase overall plant growth. Conversely, excess flow rates acted as a distress that caused the roots to become compact and inhibited root surface area and root growth. Excess flow rate thereby resulted in a lower root surface area that translated to reduced nutrient ion absorption and poorer plant growth compared with plans cultured under a suitable flow rate. Our results indicate that regulating flow rate can regulate plant thigmomorphogenesis and nutrient uptake, ultimately affecting hydroponic crop quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA