RESUMO
Multiferroic materials have attracted wide interest because of their exceptional static1-3 and dynamical4-6 magnetoelectric properties. In particular, type-II multiferroics exhibit an inversion-symmetry-breaking magnetic order that directly induces ferroelectric polarization through various mechanisms, such as the spin-current or the inverse Dzyaloshinskii-Moriya effect3,7. This intrinsic coupling between the magnetic and dipolar order parameters results in high-strength magnetoelectric effects3,8. Two-dimensional materials possessing such intrinsic multiferroic properties have been long sought for to enable the harnessing of magnetoelectric coupling in nanoelectronic devices1,9,10. Here we report the discovery of type-II multiferroic order in a single atomic layer of the transition-metal-based van der Waals material NiI2. The multiferroic state of NiI2 is characterized by a proper-screw spin helix with given handedness, which couples to the charge degrees of freedom to produce a chirality-controlled electrical polarization. We use circular dichroic Raman measurements to directly probe the magneto-chiral ground state and its electromagnon modes originating from dynamic magnetoelectric coupling. Combining birefringence and second-harmonic-generation measurements with theoretical modelling and simulations, we detect a highly anisotropic electronic state that simultaneously breaks three-fold rotational and inversion symmetry, and supports polar order. The evolution of the optical signatures as a function of temperature and layer number surprisingly reveals an ordered magnetic polar state that persists down to the ultrathin limit of monolayer NiI2. These observations establish NiI2 and transition metal dihalides as a new platform for studying emergent multiferroic phenomena, chiral magnetic textures and ferroelectricity in the two-dimensional limit.
RESUMO
Strong interactions between different degrees of freedom lead to exotic phases of matter with complex order parameters and emergent collective excitations. Conventional techniques, such as scattering and transport, probe the amplitudes of these excitations, but they are typically insensitive to phase. Therefore, novel methods with phase sensitivity are required to understand ground states with phase modulations and interactions that couple to the phase of collective modes. Here, by performing phase-resolved coherent phonon spectroscopy (CPS), we reveal a hidden spin-lattice coupling in a vdW antiferromagnet FePS3 that eluded other phase-insensitive conventional probes, such as Raman and X-ray scattering. With comparative analysis and analytical calculations, we directly show that the magnetic order in FePS3 selectively couples to the trigonal distortions through partially filled t2g orbitals. This magnetoelastic coupling is linear in magnetic order and lattice parameters, rendering these distortions inaccessible to inelastic scattering techniques. Our results not only capture the elusive spin-lattice coupling in FePS3 but also establish phase-resolved CPS as a tool to investigate hidden interactions.
RESUMO
Coexisting orders are key features of strongly correlated materials and underlie many intriguing phenomena from unconventional superconductivity to topological orders. Here, we report the coexistence of two interacting charge-density-wave (CDW) orders in EuTe_{4}, a layered crystal that has drawn considerable attention owing to its anomalous thermal hysteresis and a semiconducting CDW state despite the absence of perfect Fermi surface nesting. By accessing unoccupied conduction bands with time- and angle-resolved photoemission measurements, we find that monolayers and bilayers of Te in the unit cell host different CDWs that are associated with distinct energy gaps. The two gaps display dichotomous evolutions following photoexcitation, where the larger bilayer CDW gap exhibits less renormalization and faster recovery. Surprisingly, the CDW in the Te monolayer displays an additional momentum-dependent gap renormalization that cannot be captured by density-functional theory calculations. This phenomenon is attributed to interlayer interactions between the two CDW orders, which account for the semiconducting nature of the equilibrium state. Our findings not only offer microscopic insights into the correlated ground state of EuTe_{4} but also provide a general nonequilibrium approach to understand coexisting, layer-dependent orders in a complex system.
RESUMO
A polariton is a fundamental quasiparticle that arises from strong light-matter interaction and as such has attracted wide scientific and practical interest. When light is strongly coupled to the crystal lattice, it gives rise to phonon-polaritons (PPs), which have been proven useful in the dynamical manipulation of quantum materials and the advancement of terahertz technologies. Yet, current detection and characterization methods of polaritons are still limited. Traditional techniques such as Raman or transient grating either rely on fine-tuning of external parameters or complex phase extraction techniques. To overcome these inherent limitations, we propose and demonstrate a technique based on a time-of-flight measurement of PPs. We resonantly launch broadband PPs with intense terahertz fields and measure the time-of-flight of each spectral component with time-resolved second harmonic generation. The time-of-flight information, combined with the PP attenuation, enables us to resolve the real and imaginary parts of the PP dispersion relation. We demonstrate this technique in the van der Waals magnets NiI2 and MnPS3 and reveal a hidden magnon-phonon interaction. We believe that this approach will unlock new opportunities for studying polaritons across diverse material systems and enhance our understanding of strong light-matter interaction.
RESUMO
In van der Waals (vdW) materials, strong coupling between different degrees of freedom can hybridize elementary excitations into bound states with mixed character1-3. Correctly identifying the nature and composition of these bound states is key to understanding their ground state properties and excitation spectra4,5. Here, we use ultrafast spectroscopy to reveal bound states of d-orbitals and phonons in 2D vdW antiferromagnet NiPS3. These bound states manifest themselves through equally spaced phonon replicas in frequency domain. These states are optically dark above the Néel temperature and become accessible with magnetic order. By launching this phonon and spectrally tracking its amplitude, we establish the electronic origin of bound states as localized d-d excitations. Our data directly yield electron-phonon coupling strength which exceeds the highest known value in 2D systems6. These results demonstrate NiPS3 as a platform to study strong interactions between spins, orbitals and lattice, and open pathways to coherent control of 2D magnets.
RESUMO
The massless Dirac electron transport in graphene has led to a variety of unique light-matter interaction phenomena, which promise many novel optoelectronic applications. Most of the effects are only accessible by breaking the spatial symmetry, through introducing edges, p-n junctions, or heterogeneous interfaces. The recent development of direct synthesis of lateral heterostructures offers new opportunities to achieve the desired asymmetry. As a proof of concept, we study the photothermoelectric effect in an asymmetric lateral heterojunction between the Dirac semimetallic monolayer graphene and the parabolic semiconducting monolayer MoS2. Very different hot-carrier cooling mechanisms on the graphene and the MoS2 sides allow us to resolve the asymmetric thermalization pathways of photoinduced hot carriers spatially with electrostatic gate tunability. We also demonstrate the potential of graphene-2D semiconductor lateral heterojunctions as broadband infrared photodetectors. The proposed structure shows an extreme in-plane asymmetry and provides a new platform to study light-matter interactions in low-dimensional systems.