Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Adv Funct Mater ; 30(16)2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33071710

RESUMO

Despite the approval of oncolytic virus therapy for advanced melanoma, its intrinsic limitations that include the risk of persistent viral infection and cost-intensive manufacturing motivate the development of analogous approaches that are free from the disadvantages of virus-based therapies. Herein, we report a nanoassembly comprised of multivalent host-guest interactions between polymerized paclitaxel (pPTX) and nitric oxide incorporated polymerized ß-cyclodextrin (pCD-pSNO) that through its bioactive components and when used locoregionally recapitulates the therapeutic effects of oncolytic virus. The resultant pPTX/pCD-pSNO exhibits significantly enhanced cytotoxicity, immunogenic cell death, dendritic cell activation and T cell expansion in vitro compared to free agents alone or in combination. In vivo, intratumoral administration of pPTX/pCD-pSNO results in activation and expansion of dendritic cells systemically, but with a corresponding expansion of myeloid-derived suppressor cells and suppression of CD8+ T cell expansion. When combined with antibody targeting cytotoxic T lymphocyte antigen-4 that blunts this molecule's signaling effects on T cells, intratumoral pPTX/pCD-pSNO treatment elicits potent anticancer effects that significantly prolong animal survival. This formulation thus leverages the chemo- and immunotherapeutic synergies of paclitaxel and nitric oxide and suggests the potential for virus-free nanoformulations to mimic the therapeutic action and benefits of oncolytic viruses.

2.
Nanomedicine ; 24: 102110, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31666202

RESUMO

Sonodynamic therapy utilizes ultrasound (US)-responsive generation of reactive oxygen species (ROS) from sonosensitizer, and it is a powerful strategy for anti-cancer treatment in combination with chemotherapy. Herein, we report a precisely designed sonodynamic chemotherapeutics which exhibits US-responsive drug release via ROS generation from co-loaded sono-sensitizer. Doxorubicin (DOX)-coordinated titanium dioxide nanoparticles (TNPs) were encapsulated with polymeric phenyboronic acid (pPBA) via phenylboronic ester bond between pPBA and DOX. Loaded DOX was readily released under US irradiation due to the ROS-cleavable characteristics of phenylboronic ester bond. The size of nanoparticles was around 200 nm, and DOX was released by ROS generated under US irradiation. Tumor targeting by PBA moiety, intracellular ROS generation, and combined therapeutic effect against tumor cells were confirmed in vitro. Finally, we demonstrated high tumor accumulation and efficient tumor growth inhibition in tumor-bearing mice under US irradiation, which revealed potential as a multi-functional agent for sonodynamic chemotherapy.


Assuntos
Materiais Revestidos Biocompatíveis , Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanopartículas , Neoplasias Experimentais , Titânio , Terapia por Ultrassom , Animais , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Titânio/química , Titânio/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Acta Pharmacol Sin ; 38(6): 848-858, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28414203

RESUMO

Since the discovery that nano-scaled particulates can easily be incorporated into tumors via the enhanced permeability and retention (EPR) effect, such nanostructures have been exploited as therapeutic small molecule delivery systems. However, the convoluted synthetic process of conventional nanostructures has impeded their feasibility and reproducibility in clinical applications. Herein, we report an easily prepared formulation of self-assembled nanostructures for systemic delivery of the anti-cancer drug doxorubicin (DOX). Phenylboronic acid (PBA) was grafted onto the polymeric backbone of poly(maleic anhydride). pPBA-DOX nanocomplexes were prepared by simple mixing, on the basis of the strong interaction between the 1,3-diol of DOX and the PBA moiety on pPBA. Three nanocomplexes (1, 2, 4) were designed on the basis of [PBA]:[DOX] molar ratios of 1:1, 2:1, and 4:1, respectively, to investigate the function of the residual PBA moiety as a targeting ligand. An acid-labile drug release profile was observed, owing to the intrinsic properties of the phenylboronic ester. Moreover, the tumor-targeting ability of the nanocomplexes was demonstrated, both in vitro by confocal microscopy and in vivo by fluorescence imaging, to be driven by an inherent property of the residual PBA. Ligand competition assays with free PBA pre-treatment demonstrated the targeting effect of the residual PBA from the nanocomplexes 2 and 4. Finally, the nanocomplexes 2 and 4, compared with the free DOX, exhibited significantly greater anti-cancer effects in vitro and even in vivo. Our pPBA-DOX nanocomplex enables a new paradigm for self-assembled nanostructures with potential biomedical applications.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Doxorrubicina/farmacologia , Nanoestruturas/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Ácidos Borônicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Polimerização , Relação Estrutura-Atividade
4.
J Control Release ; 345: 138-146, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271910

RESUMO

The recent development and prospects of cancer immunotherapy have led to diversification of the types of therapeutic agents used. By simultaneously administering various agents, a more effective therapeutic effect can be expected due to the synergistic effects of multiple therapeutics. In particular, if a substance with adjuvanticity and tumor antigen is delivered at the same time, enhanced cancer immunotherapy can be achieved through high cross-presentation and antigen-presenting cell (APC) maturation. To this end, we developed a polymerized phenylboronic acid (pPBA)-based immunogel for the simultaneous delivery of mannan, which has adjuvanticity and tumor antigen. The immunogel was formed by simple mixing of the polysaccharide mannan with pPBA through the formation of phenylboronic ester between the diol of mannose monomers and phenylboronic acids of pPBA. The immunogel was slowly degraded by hydrolysis to release the loaded tumor antigen. In addition, the released mannan played a key role in both APC maturation in vitro and the upregulation of cross-presentation. Finally, the pPBA-mannan immunogel exhibited a significant anticancer effect in the 4 T1 cell-inoculated mouse model, implying the potential of a codelivery system of antigens and adjuvants for effective cancer immunotherapy.


Assuntos
Mananas , Neoplasias , Animais , Antígenos de Neoplasias , Ácidos Borônicos , Imunoterapia , Camundongos , Neoplasias/tratamento farmacológico
5.
J Control Release ; 343: 78-88, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065158

RESUMO

Tumor-associated macrophages (TAMs), which dampen the therapeutic efficacy of cancer immunotherapy, are the key players in the immunosuppressive tumor microenvironment (TME). Therefore, reprogramming TAMs into tumoricidal M1 macrophages possesses considerable potential as a novel immunotherapy. However, the low bioavailability of polarization agents and limited accumulation of TAMs restrict their anti-tumor efficacy. In this study, we developed a polymer-based hypoxia-responsive nanocomplex to target TAMs in hypoxia for enhanced cancer immunotherapy. We synthesized a hypoxia-cleavable polymer poly(ethylene glycol)-azo-poly(l-lysine) (PEG-azo-PLL) and formulated a nanocomplex by simple mixing PEG-azo-PLL and poly(I:C). By mimicking in vitro hypoxia conditions, PEG-azo-PLL/poly(I:C) complexes could transform the physicochemical properties to enhance the delivery efficiency of poly(I:C) to tumor hypoxia, where M2-like TAMs are accumulated. Furthermore, PEG-azo-PLL/poly(I:C) could successfully reduce the population of M2-like TAMs in hypoxic tumors and promoted infiltration of CD8+ T cells in vivo, resulting in the favorable conversion of immunosuppressive TME. Finally, PEG-azo-PLL/poly(I:C) could elicit a significant in vivo anti-tumor effect in B16F10-bearing mice in addition to a prolonged survival time, demonstrating that the hypoxia-responsive nanocomplex PEG-azo-PLL/poly(I:C) is a promising approach for TAM reprogramming immunotherapy for solid tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Linfócitos T CD8-Positivos , Hipóxia/terapia , Imunização , Camundongos , Neoplasias/terapia , Polietilenoglicóis/química , Macrófagos Associados a Tumor
6.
Des Monomers Polym ; 25(1): 245-253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017475

RESUMO

Carbon-based nanomaterials, such as carbon nanotubes, fullerenes, nanodiamonds, and graphene, have been investigated for various biomedical applications, including biological imaging, photothermal therapy, drug/gene delivery, cancer therapy, biosensors, and electrochemical sensors. Graphene oxide (GO) has unique physicochemical properties and can be used to restore conductivity through oxidation. In this study, we developed poly(N-isopropylacrylamide) (PNIPAM)-based nanogel systems containing GO for controlled in vitro drug delivery. The photothermal effects of the PNIPAM/GO- and PNIPAMAAM/GO-based nanogel systems were enhanced. The release of DOX from the PNIPAM/GO-based nanogel was achieved using the photothermal effect of near-infrared irradiation. Using a Cell Counting Kit-8 assay, the cytotoxicity of all conditions demonstrated that the PNIPAM composite-based nanogels were biocompatible with no significance.

7.
Adv Mater ; 32(22): e2000020, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32319126

RESUMO

The formation of an immunological synapse (IS) on recognition of a cancer cell is the main mechanism underlying the natural killer (NK)-cell-mediated killing of tumor cells. Herein, an integrative strategy for cancer therapy against solid tumors is reported, in which alterations in the cleft of IS, following the secretion of acidic granular content, are utilized as a trigger for the delivery of chemotherapeutic drugs. NK cells are decorated with the IS-environment-responsive micellar system to ensure the release of the payload when they attack cancer cells. Using this strategy, the immunological cytotoxic killing effect of NK cells against solid tumors is reinforced with the site-specific diffusion of chemotherapeutic agents. Harnessing the intrinsic mechanism for the recognition of abnormal cells and the tumor-homing effect of NK cells limit the adverse systemic effects of chemotherapeutic drugs. This approach may provide a pragmatic platform for the universal and effective utilization of IS formation.


Assuntos
Sinapses Imunológicas/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Comunicação Celular/imunologia , Citotoxicidade Imunológica , Doxorrubicina , Portadores de Fármacos , Humanos , Imunoterapia , Neoplasias/imunologia , Neoplasias Experimentais/terapia , Imagem Óptica
8.
ACS Nano ; 13(1): 476-488, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30563320

RESUMO

A key factor for successful cancer immunotherapy (CIT) is the extent of antigen presentation by dendritic cells (DCs) that phagocytize tumor-associated antigens (TAA) in the tumor site and migrate to tumor draining lymph nodes (TDLN) for the activation of T cells. Although various types of adjuvant delivery have been studied to enhance the activity of the DCs, poor delivery efficiency and depleted population of tumor infiltrating DCs have limited the efficacy of CIT. Herein, we report a hypoxia-responsive mesoporous silica nanocarrier (denoted as CAGE) for an enhanced CIT assisted by photodynamic therapy (PDT). In this study, CAGE was designed as a hypoxia-responsive transforming carrier to improve the intracellular uptake of nanocarriers and the delivery of adjuvants to DCs. Furthermore, PDT was exploited for the generation of immunogenic debris and recruitment of DCs in a tumor site, followed by enhanced antigen presentation. Finally, a significant inhibition of tumor growth was observed in vivo, signifying that the PDT would be a promising solution for DC-based immunotherapy.


Assuntos
Apresentação de Antígeno , Células Dendríticas/imunologia , Fatores Imunológicos/administração & dosagem , Imunoterapia/métodos , Nanopartículas/química , Neoplasias Experimentais/terapia , Animais , Antígenos de Neoplasias/imunologia , Hipóxia Celular , Linhagem Celular Tumoral , Quitosana/análogos & derivados , Células Dendríticas/metabolismo , Feminino , Hipertermia Induzida/métodos , Fatores Imunológicos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Fotossensibilizantes/química , Fototerapia/métodos , Polietilenoglicóis/química , Dióxido de Silício/química
9.
Chem Commun (Camb) ; 55(98): 14789-14792, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31761922

RESUMO

We have reported rational design of a polymeric NO delivery micelle as a cytosol-selective NO bomb. Protected NO-donors are released from the micelle under endolysosomal conditions, and then deprotected by cytosolic glutathione. Cytosol-selective NO delivery facilitates significant tumor regression without the aid of other therapeutic modalities even in intravenous administrations.


Assuntos
Antineoplásicos/química , Citosol/metabolismo , Micelas , Óxido Nítrico/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Glutationa/metabolismo , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Óxido Nítrico/uso terapêutico , Polímeros/química , Transplante Heterólogo
10.
J Control Release ; 259: 203-211, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27984106

RESUMO

Along with the successful discovery of paclitaxel as an anticancer drug, natural products have drawn great attention in drug discovery. Recently, andrographolide (AND) from Andrographis paniculata was reported to provide several benefits, including an anticancer effect. However, the extremely low solubility of the compound in an aqueous medium was an obstacle to overcome for the systemic administration and clinical application of AND. Based on our previous report, we formulated a water-soluble nanoconstruct by forming a boronic ester between the cis-1,3-diol of AND with hydrophilically polymerized phenylboronic acid (pPBA). The release of loaded AND was controlled by intracellular conditions, specifically, by low pH and high ATP concentrations, due to the pH- and diol-dependent affinity of the boronic ester. Because of the intrinsic property of the PBA moiety, the pPBA-AND nanoconstruct exhibited an excellent tumor targeting ability both in vitro and in vivo. Finally, a significant inhibition of tumor growth was observed in vivo. Taken together, our strategy, which is based on the formulation of a soluble nanoconstruct using hydrophilically polymerized PBA and a cis-diol, is plausible and provides a delivery system for a wide variety of chemotherapeutics. This strategy has applications not only in cancer therapy but also broader fields such as anti-inflammation or immunotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Ácidos Borônicos/administração & dosagem , Diterpenos/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanoestruturas/administração & dosagem , Polímeros/administração & dosagem , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Ácidos Borônicos/química , Ácidos Borônicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/química , Diterpenos/uso terapêutico , Liberação Controlada de Fármacos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Polimerização , Polímeros/química , Polímeros/uso terapêutico
11.
J Control Release ; 220(Pt B): 624-30, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26348389

RESUMO

This work demonstrates the development of nitric oxide-releasing ointment and its potential on efficient wound healing. Nitric oxide-releasing polymer was successfully synthesized, which is composed of biocompatible Pluronic F127, branched polyethylenimine and 1-substituted diazen-1-ium-1,2-diolates. The synthesized nitric oxide-releasing polymer was incorporated into the PEG-based ointment which not only facilitated nitric oxide release in a slow manner, but also served as a moisturizer to enhance the wound healing. As compared to control groups, the nitric oxide-releasing ointment showed the accelerated wound closure with enhanced re-epithelialization, collagen deposition, and blood vessel formation in vivo. Therefore, this nitric oxide-based ointment presents the promising potential for the efficient strategy to heal the cutaneous wound.


Assuntos
Compostos Azo/administração & dosagem , Doadores de Óxido Nítrico/administração & dosagem , Óxido Nítrico/metabolismo , Poloxâmero/administração & dosagem , Polietilenoimina/administração & dosagem , Pele/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Administração Cutânea , Animais , Compostos Azo/síntese química , Química Farmacêutica , Colágeno/metabolismo , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Doadores de Óxido Nítrico/síntese química , Pomadas , Poloxâmero/análogos & derivados , Poloxâmero/síntese química , Polietilenoglicóis/química , Polietilenoimina/análogos & derivados , Polietilenoimina/síntese química , Reepitelização/efeitos dos fármacos , Pele/irrigação sanguínea , Pele/metabolismo , Pele/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA