Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 213(3): 296-305, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38874543

RESUMO

During the perinatal period, the immune system sets the threshold to select either response or tolerance to environmental Ags, which leads to the potential to provide a lifetime of protection and health. B-1a B cells have been demonstrated to develop during this perinatal time window, showing a unique and restricted BCR repertoire, and these cells play a major role in natural Ab secretion and immune regulation. In the current study, we developed a highly efficient temporally controllable RAG2-based lymphoid lineage cell labeling and tracking system and applied this system to understand the biological properties and contribution of B-1a cells generated at distinct developmental periods to the adult B-1a compartments. This approach revealed that B-1a cells with a history of RAG2 expression during the embryonic and neonatal periods dominate the adult B-1a compartment, including those in the bone marrow (BM), peritoneal cavity, and spleen. Moreover, the BCR repertoire of B-1a cells with a history of RAG2 expression during the embryonic period was restricted, becoming gradually more diverse during the neonatal period, and then heterogeneous at the adult stage. Furthermore, more than half of plasmablasts/plasma cells in the adult BM had embryonic and neonatal RAG2 expression histories. Moreover, BCR analysis revealed a high relatedness between BM plasmablasts/plasma cells and B-1a cells derived from embryonic and neonatal periods, suggesting that these cell types have a common origin. Taken together, these findings define, under native hematopoietic conditions, the importance in adulthood of B-1a cells generated during the perinatal period.


Assuntos
Linhagem da Célula , Proteínas de Ligação a DNA , Animais , Camundongos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linhagem da Célula/imunologia , Linfócitos B/imunologia , Rastreamento de Células/métodos , Receptores de Antígenos de Linfócitos B/imunologia , Subpopulações de Linfócitos B/imunologia , Camundongos Endogâmicos C57BL , Hematopoese
2.
Biochem Biophys Res Commun ; 682: 216-222, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826945

RESUMO

Fusobacterium nucleatum (Fn) is abundant in the human oral cavity and has been associated with periodontal disease, which in-turn has been linked to respiratory disease development. Tight junctions (TJs) line the airway and alveoli surfaces serving as a first line of defense against multiple pathogens. Fn has already been linked to respiratory diseases, however, how Fn affects the alveolar TJ was not fully elucidated. Here, we designed and analyzed a TJ network, grew Fn cells and inoculated it in vitro (16HBE and primary cells) and in vivo (mice lung), measured transepithelial electrical resistance, performed RT-PCR, checked for in vitro cell and mice lung permeability, and determined air space size through morphometric measurements. We found that Fn can potentially affect TJs proteins that are directly exposed to the alveolar surface. Additionally, Fn could possibly cause neutrophil accumulation and an increase in alveolar space. Moreover, Fn putatively may cause an increase in paracellular permeability in the alveoli.


Assuntos
Células Epiteliais Alveolares , Junções Íntimas , Camundongos , Animais , Humanos , Junções Íntimas/metabolismo , Fusobacterium nucleatum , Pulmão , Permeabilidade , Células Epiteliais/metabolismo
3.
J Theor Biol ; 558: 111376, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36473508

RESUMO

SARS-CoV-2 (SARS2) regularly mutates resulting to variants of concern (VOC) which have higher virulence and transmissibility rates while concurrently evading available therapeutic strategies. This highlights the importance of amino acid mutations occurring in the SARS2 spike protein structure since it may affect virus biology. However, this was never fully elucidated. Here, network analysis was performed based on the COVID-19 genomic epidemiology network between December 2019-July 2021. Representative SARS2 VOC spike protein models were generated and quality checked, protein model superimposition was done, and common contact based on contact mapping was established. Throughout this study, we found that: (1) certain individual variant-specific amino acid mutations can affect the spike protein structural pattern; (2) certain individual variant-specific amino acid mutations had no affect on the spike protein structural pattern; and (3) certain combination of variant-specific amino acids are putatively epistatic mutations that can potentially influence the VOC spike protein structural pattern. This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Mutação , Aminoácidos/genética
4.
Biochem Biophys Res Commun ; 589: 35-40, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34891039

RESUMO

Porphyromonas gingivalis (Pg) a major periodontal pathogen involved in periodontal disease development and progression. Moreover, Pg has two fimbriae surface proteins (FimA and Mfa1) that are genetically distinct and make-up the fimbrial shaft which in-turn form crucial attachment to oral bacteria and multiple host cells. However, unlike FimA, Mfa1 attachment to non-periodontal cells has not been fully elucidated. Considering Pg-associated periodontal disease contributes to pulmonary disease development, we investigated whether Mfa1 can functionally interact with human bronchial epithelial cells and, likewise, trigger a functional response. Initially, we simulated molecular docking and performed both luciferase and neutralization assays to confirm Mfa1-related functional interaction. Subsequently, we treated BEAS-2B cells with purified Mfa1 and performed cytokine quantification through real time-PCR and ELISA to establish Mfa1-related functional response. We found that both Mfa1-TLR2 and Mfa1-TLR4 docking is possible, however, only Mfa1-TLR2 showed a functional interaction. Additionally, we observed that both IL-8 and IL-6 gene expression and protein levels were induced confirming Mfa1-related functional response. Taken together, we propose that BEAS-2B human bronchial epithelial cells are able to recognize Pg Mfa1 and induce both IL-8 and IL-6 inflammatory responses.


Assuntos
Proteínas de Bactérias/metabolismo , Brônquios/patologia , Células Epiteliais/metabolismo , Proteínas de Fímbrias/metabolismo , Interleucina-6/biossíntese , Interleucina-8/biossíntese , Porphyromonas gingivalis/fisiologia , Receptor 2 Toll-Like/metabolismo , Linhagem Celular , Fímbrias Bacterianas/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Porphyromonas gingivalis/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
5.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054995

RESUMO

Periodontitis is an inflammatory condition that causes the destruction of the supporting tissues of teeth and is a major public health problem affecting more than half of the adult population worldwide. Recently, members of the herpes virus family, such as the Epstein-Barr virus (EBV), have been suggested to be involved in the etiology of periodontitis because bacterial activity alone does not adequately explain the clinical characteristics of periodontitis. However, the role of EBV in the etiology of periodontitis is unknown. This study aimed to examine the effect of inactivated EBV on the expression of inflammatory cytokines in human gingival fibroblasts (HGFs) and the induction of osteoclast differentiation. We found that extremely high levels of interleukin (IL)-6 and IL-8 were induced by inactivated EBV in a copy-dependent manner in HGFs. The levels of IL-6 and IL-8 in HGFs were higher when the cells were treated with EBV than when treated with lipopolysaccharide and lipoteichoic acid. EBV induced IκBα degradation, NF-κB transcription, and RAW264.7 cell differentiation into osteoclast-like cells. These findings suggest that even without infecting the cells, EBV contributes to inflammatory cytokine production and osteoclast differentiation by contact with oral cells or macrophage lineage, resulting in periodontitis onset and progression.


Assuntos
Citocinas/metabolismo , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/fisiologia , Interações Hospedeiro-Patógeno , Mediadores da Inflamação/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Citocinas/genética , Infecções por Vírus Epstein-Barr/virologia , Expressão Gênica , Gengiva/citologia , Gengiva/virologia , Camundongos , Células RAW 264.7 , Transdução de Sinais
6.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207046

RESUMO

More than a year ago, the coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was declared a pandemic by the World Health Organization, with the world approaching its fourth wave. During this period, vaccines were developed in a much shorter period than thought possible, with the initiation of the pertinent vaccination. However, oral cavities have come under renewed scrutiny worldwide because saliva, a mixture of salivary secretions, pharyngeal secretions, and gingival crevicular fluid, have not only been shown to contain infective viral loads, mediating the route of SARS-CoV-2 transmission via droplet, aerosol, or contagion, but also used as a sample for viral RNA testing with a usefulness comparable to the nasopharyngeal swab. The oral cavity is an important portal for ingress of SARS-CoV-2, being an entryway to the bronchi, alveoli, and rest of the lower respiratory tract, causing inflammation by viral infection. Moreover, angiotensin-converting enzyme 2, a host receptor for SARS-CoV-2, coupled with proteases responsible for viral entry have been found to be expressed on the tongue and other oral mucosae, suggesting that the oral cavity is the site of virus replication and propagation. Furthermore, there is a possibility that the aspiration of oral bacteria (such as periodontal pathogens) along with saliva into the lower respiratory tract may be a complicating factor for COVID-19 because chronic obstructive pulmonary disease and diabetes are known COVID-19 comorbidities with a greater risk of disease aggravation and higher death rate. These comorbidities have a strong connection to chronic periodontitis and periodontal pathogens, and an oral health management is an effective measure to prevent these comorbidities. In addition, oral bacteria, particularly periodontal pathogens, could be proinflammatory stimulants to respiratory epithelia upon its exposure to aspirated bacteria. Therefore, it may be expected that oral health management not only prevents comorbidities involved in aggravating COVID-19 but also has an effect against COVID-19 progression. This review discusses the significance of oral health management in SARS-CoV-2 infection in the era of "the new normal with COVID-19" and COVID-19 prevention with reference to the hypothetical mechanisms that the authors and the other researchers have proposed.


Assuntos
Saúde Bucal , SARS-CoV-2/fisiologia , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/virologia , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Língua/metabolismo , Internalização do Vírus
7.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33572938

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global public health emergency. Periodontitis, the most prevalent disease that leads to tooth loss, is caused by infection by periodontopathic bacteria. Periodontitis is also a risk factor for pneumonia and the exacerbation of chronic obstructive pulmonary disease, presumably because of the aspiration of saliva contaminated with periodontopathic bacteria into the lower respiratory tract. Patients with these diseases have increased rates of COVID-19 aggravation and mortality. Because periodontopathic bacteria have been isolated from the bronchoalveolar lavage fluid of patients with COVID-19, periodontitis may be a risk factor for COVID-19 aggravation. However, the molecular links between periodontitis and COVID-19 have not been clarified. In this study, we found that the culture supernatant of the periodontopathic bacterium Fusobacterium nucleatum (CSF) upregulated the SARS-CoV-2 receptor angiotensin-converting enzyme 2 in A549 alveolar epithelial cells. In addition, CSF induced interleukin (IL)-6 and IL-8 production by both A549 and primary alveolar epithelial cells. CSF also strongly induced IL-6 and IL-8 expression by BEAS-2B bronchial epithelial cells and Detroit 562 pharyngeal epithelial cells. These results suggest that when patients with mild COVID-19 frequently aspirate periodontopathic bacteria, SARS-CoV-2 infection is promoted, and inflammation in the lower respiratory tract may become severe in the presence of viral pneumonia.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Meios de Cultivo Condicionados/química , Citocinas/metabolismo , Fusobacterium nucleatum/metabolismo , Enzima de Conversão de Angiotensina 2/genética , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , SARS-CoV-2/isolamento & purificação , Regulação para Cima/efeitos dos fármacos
8.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178406

RESUMO

Chronic periodontitis is spreading worldwide and mutually interacts with systemic diseases like diabetes mellitus. Although periodontopathic bacteria are inevitable pathogens in their onset and progression, many cases are not ascribable to the virulence of these bacteria because the effect of plaque control is limited. In contrast, Epstein-Barr virus (EBV) in the periodontium has been correlated with chronic periodontitis and has recently been considered as a promising pathogenic candidate for this disease. However, several important questions have yet to be addressed. For instance, although EBV latently infects more than 90% of individuals over the world, why do patients with chronic periodontitis exclusively harbor progeny EBV in the oral cavity? In addition, how does latently infected or reactivated EBV in the periodontium relate to the onset or progression of chronic periodontitis? Finally, is periodontitis incurable because EBV is the pathogen for chronic periodontitis? In this review, we attempt to answer these questions by reporting the current understanding of molecular relations and mechanisms between periodontopathic bacteria and EBV reactivation in the context of how this relationship may pertain to the etiology of chronic periodontitis.


Assuntos
Periodontite Crônica/virologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/patogenicidade , Animais , Humanos , Bolsa Periodontal/virologia , Periodonto/virologia
9.
Molecules ; 25(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847022

RESUMO

Fusobacterium nucleatum (Fn) is generally an opportunistic oral pathogen that adheres to mammalian mucosal sites, triggering a host inflammatory response. In general, Fn is normally found within the human oral cavity; however, it was previously reported that Fn is a risk factor for certain respiratory diseases. Surprisingly, this was never fully elucidated. Here, we investigated the virulence potential of heat-killed Fn on primary human tracheal, bronchial, and alveolar epithelial cells. In this study, we measured the secretion of inflammatory- (IL-8 and IL-6), stress- (total heme and hydrogen peroxide), and cell death-related (caspase-1 and caspase-3) signals. We established that the inflammatory response mechanism varies in each epithelial cell type: (1) along tracheal cells, possible Fn adherence would trigger increased heme secretion and regulated inflammatory response; (2) along bronchial cells, potential Fn adherence would simultaneously initiate an increase in secreted H2O2 and inflammatory response (ascribable to decreased secreted heme amounts); and (3) along alveolar cells, putative Fn adherence would instigate the increased secretion of inflammatory responses attributable to a decrease in secreted heme levels. Moreover, regardless of the epithelial cell-specific inflammatory mechanism, we believe these are putative, not harmful. Taken together, we propose that any potential Fn-driven inflammation along the respiratory tract would be initiated by differing epithelial cell-specific inflammatory mechanisms that are collectively dependent on secreted heme.


Assuntos
Células Epiteliais Alveolares/metabolismo , Fusobacterium nucleatum/química , Heme/metabolismo , Temperatura Alta , Células Epiteliais Alveolares/patologia , Caspase 1/metabolismo , Caspase 3/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo
10.
Cell Physiol Biochem ; 53(1): 49-61, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31169991

RESUMO

BACKGROUND/AIMS: The most prevalent infectious disease, chronic periodontitis which leads to alveolar bone destruction and subsequent tooth loss, develops due to proinflammatory cytokine production induced by periodontopathic bacteria. Chronic obstructive pulmonary disease (COPD), a non-infectious disease, is the third leading cause of death globally. This condition exacerbates frequently, and which is attributable to proinflammatory cytokine production induced by infection by respiratory microorganisms such as Streptococcus pneumoniae. Although a positive association has recently been revealed between chronic periodontitis and COPD, how periodontitis contributes to the pathogenesis of COPD remains unclear. Therefore, we hypothesized that some periodontopathic bacteria are involved in the exacerbation of COPD through the induction of proinflammatory cytokine production by respiratory epithelial cells. In this connection, COPD develops in the airways; however, because most periodontopathic bacteria are anaerobic, they are unlikely to exhibit stable virulence in the lower respiratory organs in humans. Hence, we aimed to elucidate whether exposure to heat-inactivated periodontopathic bacteria induces proinflammatory cytokine production by several human respiratory epithelial cell lines and in the lower respiratory organs and serum in mice. METHODS: Real-time polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) were used to investigate in vitro induction by heat-inactivated periodontopathic bacteria and S. pneumoniae for mRNA expression and protein production of interleukin (IL)-8 and IL-6 by human respiratory epithelial cell lines. ELISA was also used to determine in vivo induction of cytokine production in the lower respiratory organs and serum of intratracheally heat-inactivated Fusobacterium nucleatum-inoculated mice. RESULTS: Some, but not all, periodontopathic bacteria, especially F. nucleatum, strongly induced IL-8 and IL-6 production by BEAS-2B bronchial epithelial cells. In addition, F. nucleatum induced IL-8 production by A549 alveolar epithelial cells as well as IL-8 and IL-6 production by Detroit 562 pharyngeal epithelial cells. Furthermore, F. nucleatum induced considerably higher cytokine production than S. pneumoniae. This was also observed in the entire lower respiratory organs and serum in mice. CONCLUSION: Exposure to increased number of F. nucleatum potentially induces proinflammatory cytokine production by human bronchial and pharyngeal epithelial cells, which may trigger exacerbation of COPD.


Assuntos
Fusobacterium nucleatum/patogenicidade , Interleucina-6/metabolismo , Sistema Respiratório/microbiologia , Animais , Brônquios/citologia , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Interleucina-6/sangue , Interleucina-6/genética , Interleucina-8/sangue , Interleucina-8/genética , Interleucina-8/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sistema Respiratório/metabolismo , Streptococcus pneumoniae/patogenicidade
11.
Arch Biochem Biophys ; 645: 81-86, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29551420

RESUMO

Staphylococcus aureus is associated with several clinically significant infections among humans and infections associated with antibiotic-resistant strains are growing in frequency. Antivirulence strategies shift the target of drugs from bacterial growth to the infection process resulting to milder evolutionary pressure for the development of bacterial resistant strains. Staphyloxanthin (STX) is a yellowish-orange carotenoid pigment synthesized by S. aureus and this carotenoid functions as an important virulence factor for the bacteria. In this study, we elucidated whether network analytics can be used as a viable tool to identify significant components in the STX biosynthetic network which in-turn could serve as possible antivirulence drug targets. For confirmation, we correlated our results to known drugs that were able to inhibit STX biosynthesis. Throughout this study, we established that crtN(1) activity and 4,4'-diaponeurosporene amounts are significant components in the STX biosynthetic network and, moreover, network analytics can aid in identifying antivirulence drug targets within the STX biosynthetic network. Similarly, we found that network analytics is capable of identifying multiple potential targets simultaneously. Taken together, we propose that an effective antivirulence drug against S. aureus STX biosynthesis would involve targeting crtN(1) activity, 4,4'-diaponeurosporene levels, or both components.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo , Xantofilas/biossíntese , Carotenoides/biossíntese , Carotenoides/farmacologia , Terapia de Alvo Molecular , Staphylococcus aureus/enzimologia , Staphylococcus aureus/patogenicidade , Triterpenos/farmacologia , Virulência/efeitos dos fármacos
12.
Microb Pathog ; 103: 65-70, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27998731

RESUMO

The aim of endodontic root canal treatment is the elimination of bacteria and their products from an infected tooth root canal. To effectively disinfect a root canal, an ultrasonic irrigation system, in which hydroxyl radicals (HO·) generated artificially by sonolysis of H2O2, was developed previously for endodontic applications and was demonstrated to have bactericidal efficacy against Enterococcus faecalis. To improve this system, we examined the in vitro bactericidal effects of HO· generated from H2O2, activated by simultaneous irradiation with ultrasound for sonolysis and dental LED light for photolysis with a peak wavelength of 405 nm. Regarding the LED irradiation, two methods were used: (i) 'ideal' experimental conditions (irradiation close to the glass tube), and (ii) simulated endodontic conditions (more distant irradiation of a masked glass tube). In these conditions, HO· generation from H2O2 was detected by electron spin resonance (ESR) spectroscopy, and bactericidal efficacy against E. faecalis was assessed by measuring the colony forming units (CFU)/mL. The results indicated that HO· generation by ESR measurements and the bactericidal effect on E. faecalis by viable count using CFU/mL were enhanced significantly in a time-dependent manner in both conditions. In a comparison of these conditions, bactericidal activity under 'ideal' experimental conditions was similar to that under simulated endodontic conditions. Moreover, the irradiation time for effective killing of E. faecalis through the sonolysis and photolysis of H2O2 under simulated endodontic conditions was shorter than that with sonolysis alone. These results demonstrate that H2O2 activated by ultrasound and LED light may be a safe and effective disinfection technique for endodontic root canal treatment.


Assuntos
Antibacterianos/farmacologia , Endodontia , Peróxido de Hidrogênio/metabolismo , Radical Hidroxila/farmacologia , Antibacterianos/metabolismo , Carga Bacteriana , Lâmpadas de Polimerização Dentária , Desinfecção/métodos , Endodontia/métodos , Humanos , Radical Hidroxila/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fotólise , Ondas Ultrassônicas
13.
BMC Oral Health ; 17(1): 148, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233156

RESUMO

BACKGROUND: Peri-implantitis (PI) is an inflammatory reaction associated with functional deterioration of supporting bones around the dental implant. Recent studies suggested Epstein-Barr virus (EBV) is involved in the pathogenesis of periodontitis. We investigated the association between EBV and Porphyromonas gingivalis in Japanese PI patients. METHODS: Fifteen periodontally healthy individuals, 15 healthy implant patients and 15 PI patients were recruited. Forty five subgingival plaque samples were collected from the deepest probing pocket depth (PPD) site from each patient. Real-time PCR was used to detect EBV DNA and P. gingivalis. RESULTS: EBV and P. gingivalis were detected in 7 and 3 PPD sites of the healthy controls, in 9 and 4 PPD sites of the healthy implants, and in 13 and 14 PPD sites of the PI patients. P. gingivalis and coexistence of EBV and P. gingivalis were detected significantly higher in the PI patients than healthy controls and healthy implant patients. EBV was detected significantly higher in the PI patients than healthy controls. CONCLUSIONS: Higher levels of EBV and P. gingivalis were detected in PPD sites of PI patients. These results suggest that coexistence of EBV and P. gingivalis may serve pathogenic factors cause for PI in Japanese dental patients.


Assuntos
DNA Viral/análise , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/isolamento & purificação , Peri-Implantite/microbiologia , Porphyromonas gingivalis/isolamento & purificação , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade
14.
Cell Mol Life Sci ; 72(2): 357-66, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25001578

RESUMO

Influenza is a serious respiratory disease among immunocompromised individuals, such as the elderly, and its prevention is an urgent social issue. Influenza viruses rely on neuraminidase (NA) activity to release progeny viruses from infected cells and spreading the infection. NA is, therefore, an important target of anti-influenza drugs. A causal relationship between bacteria and influenza virus infection has not yet been established, however, a positive correlation between them has been reported. Thus, in this study, we examined the biological effects of oral mitis group streptococci, which are predominant constituents of human oral florae, on the release of influenza viruses. Among them, Streptococcus oralis ATCC 10557 and Streptococcus mitis ATCC 6249 were found to exhibit NA activity and their culture supernatants promoted the release of influenza virus and cell-to-cell spread of the infection. In addition, culture supernatants of these NA-producing oral bacteria increased viral M1 protein expression levels and cellular ERK activation. These effects were not observed with culture supernatants of Streptococcus sanguinis ATCC 10556 which lacks the ability to produce NA. Although the NA inhibitor zanamivir suppressed the release of progeny viruses from the infected cells, the viral release was restored upon the addition of culture supernatants of NA-producing S. oralis ATCC 10557 or S. mitis ATCC 6249. These findings suggest that an increase in the number of NA-producing oral bacteria could elevate the risk of and exacerbate the influenza infection, hampering the efficacy of viral NA inhibitor drugs.


Assuntos
Antivirais/farmacologia , Influenza Humana/tratamento farmacológico , Influenza Humana/microbiologia , Neuraminidase/metabolismo , Streptococcus mitis/enzimologia , Streptococcus oralis/enzimologia , Zanamivir/farmacologia , Análise de Variância , Western Blotting , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Zanamivir/antagonistas & inibidores
15.
Cell Physiol Biochem ; 37(3): 853-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26383101

RESUMO

BACKGROUND/AIMS: The ability of human immunodeficiency virus-1(HIV-1) to establish latent infection and its re-activation is considered critical for progression of HIV-1 infection. We previously reported that a bacterial metabolite butyric acid, acting as a potent inhibitor of histone deacetylases (HDACs), could lead to induction of HIV-1 transcription; however, the molecular mechanism remains unclear. The aim of this study was to investigate the effect of butyric acid on HIV-1 gene expression. METHODS: Butyric acid-mediated HIV-1 gene expression was determined by luciferase assay and Chromatin immunoprecipitation assay. Western blot analysis and ELISA were used for the detection of HIV-1. RESULTS: We found that Sp1 binding sites within the HIV-1 promoter are primarily involved in butyric acid-mediated HIV-1 activation. In fact, Sp1 knockdown by small interfering RNA and the Sp1 inhibitor mithramycin A abolished the effect of butyric acid. We also observed that cAMP response element-binding-binding protein (CBP) was required for butyric acid-induced HIV-1 activation. CONCLUSIONS: These results suggest that butyric acid stimulates HIV-1 promoter through inhibition of the Sp1-associated HDAC activity and recruitment of CBP to the HIV-1 LTR. Our findings suggest that Sp1 should be considered as one of therapeutic targets in anti-viral therapy against HIV-1 infection aggravated by butyric acid-producing bacteria.


Assuntos
Ácido Butírico/farmacologia , Genes Virais/efeitos dos fármacos , HIV-1/genética , Fator de Transcrição Sp1/metabolismo , Linhagem Celular , Regulação Viral da Expressão Gênica/efeitos dos fármacos , HIV-1/efeitos dos fármacos , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Humanos , Plicamicina/análogos & derivados , Plicamicina/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , RNA Viral/genética , RNA Viral/metabolismo , Ativação Transcricional/efeitos dos fármacos
16.
Clin Oral Investig ; 19(7): 1605-10, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25515271

RESUMO

OBJECTIVE: A number of studies have recently suggested Epstein-Barr virus (EBV) involvement in the pathogenesis of periodontitis. In this study, we investigated the association between major periodontopathic bacteria Porphyromonas gingivalis (P. gingivalis) and EBV in Japanese chronic periodontitis (CP) patients. MATERIALS AND METHODS: A group of 25 patients with CP participated in the study along with 13 individuals without periodontitis. Subgingival samples were obtained with paper points. Quantitative real-time polymerase chain reaction (PCR) was used to detect EBV DNA and P. gingivalis. RESULTS: In the CP patients, EBV DNA and P. gingivalis were detected in both 80 % of sites with probing pocket depths (PPD) of ≥5 mm and in 40 and 36 % of sites with PPD ≤3 mm, respectively. EBV DNA and P. gingivalis were detected in 50 and 27 % of the sites in periodontally healthy individuals. Coexistence of EBV DNA and P. gingivalis was significantly higher in the deeper PPD sites of CP patients (68 %) than in the PPD sites of the healthy controls (15 %) and shallow PPD sites of CP patients (12 %). PCR-positive deeper PPD sites of CP patients for EBV DNA and P. gingivalis range between 3.74 × 10(3)∼2.83 × 10(9) and 2.73 × 10(5)∼6.65 × 10(9) (copies/ml), respectively. CONCLUSION: These results suggest an association between EBV DNA, P. gingivalis, and CP in Japanese individuals. Further studies are required to clarify this association; however, we believe that our enhanced understanding of the pathogenesis of periodontal diseases involving viral infections will lead to new treatments.


Assuntos
Periodontite Crônica/microbiologia , DNA/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Porphyromonas gingivalis/crescimento & desenvolvimento , Povo Asiático , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Reação em Cadeia da Polimerase em Tempo Real
17.
Cell Mol Gastroenterol Hepatol ; 17(5): 745-767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309455

RESUMO

BACKGROUND & AIMS: Colorectal cancer (CRC) is the third most common cancer in the world. Gut microbiota has recently been implicated in the development of CRC. Actinomyces odontolyticus is one of the most abundant bacteria in the gut of patients with very early stages of CRC. A odontolyticus is an anaerobic bacterium existing principally in the oral cavity, similar to Fusobacterium nucleatum, which is known as a colon carcinogenic bacterium. Here we newly determined the biological functions of A odontolyticus on colonic oncogenesis. METHODS: We examined the induction of intracellular signaling by A odontolyticus in human colonic epithelial cells (CECs). DNA damage levels in CECs were confirmed using the human induced pluripotent stem cell-derived gut organoid model and mouse colon tissues in vivo. RESULTS: A odontolyticus secretes membrane vesicles (MVs), which induce nuclear factor kappa B signaling and also produce excessive reactive oxygen species (ROS) in colon epithelial cells. We found that A odontolyticus secretes lipoteichoic acid-rich MVs, promoting inflammatory signaling via TLR2. Simultaneously, those MVs are internalized into the colon epithelial cells, co-localize with the mitochondria, and cause mitochondrial dysfunction, resulting in excessive ROS production and DNA damage. Induction of excessive DNA damage in colonic cells by A odontolyticus-derived MVs was confirmed in the gut organoid model and also in mouse colon tissues. CONCLUSIONS: A odontolyticus secretes MVs, which cause chronic inflammation and ROS production in colonic epithelial cells, leading to the initiation of CRC.


Assuntos
Colo , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , Colo/microbiologia , Espécies Reativas de Oxigênio , Composição de Bases , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Células Epiteliais , Bactérias/genética
18.
Microb Pathog ; 56: 16-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23337884

RESUMO

Candida albicans is a fungal pathogen that undergoes dimorphism (transformation from a yeast form to a hyphal form), wherein, the yeast form is identified as a disseminating form that plays a critical role in the early stages of Candida disease progression, while the hyphal form is found to exert additional pathogenicity by adapting to various environmental conditions. Here, we elucidated the effects of catechin on C. albicans hyphal formation. Flow cytometry analysis showed catechin inhibited FCS-induced hyphal formation. Moreover, hypha-specific gene expression in MAP kinase cascade and cAMP pathway was decreased ascribable to catechin. Furthermore, through Western blotting and cAMP synthesis analysis, we found catechin obstructs Cek1 phosphorylation in MAP kinase cascade and suppresses cAMP synthesis. These results suggest that catechin possesses anti-dimorphism activity by interfering with in vitro signal transduction. Similarly, this highlights the possible application of catechin in clinical therapy for the management and prevention of candidosis.


Assuntos
Antifúngicos/farmacologia , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Catequina/farmacologia , AMP Cíclico/antagonistas & inibidores , Proteínas Fúngicas/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Candida albicans/patogenicidade , AMP Cíclico/biossíntese , Citometria de Fluxo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Transdução de Sinais/efeitos dos fármacos
19.
Cell Mol Life Sci ; 69(15): 2583-92, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22322557

RESUMO

Latently infected cells harbor human immunodeficiency virus type 1 (HIV-1) proviral DNA copies integrated in heterochromatin, allowing persistence of transcriptionally silent proviruses. It is widely accepted that hypoacetylation of histone proteins by histone deacetylases (HDACs) is involved in maintaining the HIV-1 latency by repressing viral transcription. HIV-1 replication can be induced from latently infected cells by environmental factors, such as inflammation and co-infection with other microbes. It is known that a bacterial metabolite butyric acid inhibits catalytic action of HDAC and induces transcription of silenced genes including HIV-1 provirus. There are a number of such bacteria in gut, vaginal, and oral cavities that produce butyric acid during their anaerobic glycolysis. Since these organs are known to be the major site of HIV-1 transmission and its replication, we explored a possibility that explosive viral replication in these organs could be ascribable to butyric acid produced from anaerobic resident bacteria. In this study, we demonstrate that the culture supernatant of various bacteria producing butyric acid could greatly reactivate the latently-infected HIV-1. These bacteria include Fusobacterium nucleatum (commonly present in oral cavity, and gut), Clostridium cochlearium, Eubacterium multiforme (gut), and Anaerococcus tetradius (vagina). We also clarified that butyric acid in these culture supernatants could induce histone acetylation and HIV-1 replication by inhibiting HDAC. Our observations indicate that butyric acid-producing bacteria could be involved in AIDS progression by reactivating the latent HIV provirus and, subsequently, by eliminating such bacterial infection may contribute to the prevention of the AIDS development and transmission.


Assuntos
Bactérias/metabolismo , Ácido Butírico/metabolismo , HIV-1/fisiologia , Acetilação/efeitos dos fármacos , Bactérias/patogenicidade , Infecções Bacterianas/complicações , Infecções Bacterianas/virologia , Sequência de Bases , Ácido Butírico/toxicidade , Linhagem Celular , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , DNA Viral/genética , Sistema Digestório/microbiologia , Feminino , Infecções por HIV/complicações , Infecções por HIV/virologia , Repetição Terminal Longa de HIV , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/patogenicidade , Histonas/metabolismo , Humanos , Boca/microbiologia , Mucosa/microbiologia , Vagina/microbiologia , Ativação Viral/efeitos dos fármacos , Ativação Viral/fisiologia , Latência Viral/efeitos dos fármacos , Latência Viral/fisiologia , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
20.
J Mol Graph Model ; 119: 108396, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549224

RESUMO

Autophagy is an important cellular process that triggers a coordinated action involving multiple individual proteins and protein complexes while SARS-CoV-2 (SARS2) was found to both hinder autophagy to evade host defense and utilize autophagy for viral replication. Interestingly, the possible significant stages of the autophagy biochemical network in relation to the corresponding autophagy-targeted SARS2 proteins from the different variants of concern (VOC) were never established. In this study, we performed the following: autophagy biochemical network design and centrality analyses; generated autophagy-targeted SARS2 protein models; and superimposed protein models for structural comparison. We identified 2 significant biochemical pathways (one starts from the ULK complex and the other starts from the PI3P complex) within the autophagy biochemical network. Similarly, we determined that the autophagy-targeted SARS2 proteins (Nsp15, M, ORF7a, ORF3a, and E) are structurally conserved throughout the different SARS2 VOC suggesting that the function of each protein is preserved during SARS2 evolution. Interestingly, among the autophagy-targeted SARS2 proteins, the M protein coincides with the 2 significant biochemical pathways we identified within the autophagy biochemical network. In this regard, we propose that the SARS2 M protein is the main determinant that would influence autophagy outcome in regard to SARS2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Autofagia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA